$A_{1}$-TYPE SUBGROUPS CONTAINING REGULAR UNIPOTENT ELEMENTS
Forum of Mathematics, Sigma, Tome 7 (2019)
Voir la notice de l'article provenant de la source Cambridge University Press
Let $G$ be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic $p>0$ and let $X=\text{PSL}_{2}(p)$ be a subgroup of $G$ containing a regular unipotent element $x$ of $G$. By a theorem of Testerman, $x$ is contained in a connected subgroup of $G$ of type $A_{1}$. In this paper we prove that with two exceptions, $X$ itself is contained in such a subgroup (the exceptions arise when $(G,p)=(E_{6},13)$ or $(E_{7},19)$). This extends earlier work of Seitz and Testerman, who established the containment under some additional conditions on $p$ and the embedding of $X$ in $G$. We discuss applications of our main result to the study of the subgroup structure of finite groups of Lie type.
@article{10_1017_fms_2019_12,
author = {TIMOTHY C. BURNESS and DONNA M. TESTERMAN},
title = {$A_{1}${-TYPE} {SUBGROUPS} {CONTAINING} {REGULAR} {UNIPOTENT} {ELEMENTS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {7},
year = {2019},
doi = {10.1017/fms.2019.12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.12/}
}
TY - JOUR
AU - TIMOTHY C. BURNESS
AU - DONNA M. TESTERMAN
TI - $A_{1}$-TYPE SUBGROUPS CONTAINING REGULAR UNIPOTENT ELEMENTS
JO - Forum of Mathematics, Sigma
PY - 2019
VL - 7
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.12/
DO - 10.1017/fms.2019.12
LA - en
ID - 10_1017_fms_2019_12
ER -
TIMOTHY C. BURNESS; DONNA M. TESTERMAN. $A_{1}$-TYPE SUBGROUPS CONTAINING REGULAR UNIPOTENT ELEMENTS. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.12
Cité par Sources :