SIMPLY CONNECTED, SPINELESS 4-MANIFOLDS
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

We construct infinitely many compact, smooth 4-manifolds which are homotopy equivalent to $S^{2}$ but do not admit a spine (that is, a piecewise linear embedding of $S^{2}$ that realizes the homotopy equivalence). This is the remaining case in the existence problem for codimension-2 spines in simply connected manifolds. The obstruction comes from the Heegaard Floer $d$ invariants.
@article{10_1017_fms_2019_11,
     author = {ADAM SIMON LEVINE and TYE LIDMAN},
     title = {SIMPLY {CONNECTED,} {SPINELESS} {4-MANIFOLDS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.11/}
}
TY  - JOUR
AU  - ADAM SIMON LEVINE
AU  - TYE LIDMAN
TI  - SIMPLY CONNECTED, SPINELESS 4-MANIFOLDS
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.11/
DO  - 10.1017/fms.2019.11
LA  - en
ID  - 10_1017_fms_2019_11
ER  - 
%0 Journal Article
%A ADAM SIMON LEVINE
%A TYE LIDMAN
%T SIMPLY CONNECTED, SPINELESS 4-MANIFOLDS
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.11/
%R 10.1017/fms.2019.11
%G en
%F 10_1017_fms_2019_11
ADAM SIMON LEVINE; TYE LIDMAN. SIMPLY CONNECTED, SPINELESS 4-MANIFOLDS. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.11

Cité par Sources :