MODULAR DECOMPOSITION NUMBERS OF CYCLOTOMIC HECKE AND DIAGRAMMATIC CHEREDNIK ALGEBRAS: A PATH THEORETIC APPROACH
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

We introduce a path theoretic framework for understanding the representation theory of (quantum) symmetric and general linear groups and their higher-level generalizations over fields of arbitrary characteristic. Our first main result is a ‘super-strong linkage principle’ which provides degree-wise upper bounds for graded decomposition numbers (this is new even in the case of symmetric groups). Next, we generalize the notion of homomorphisms between Weyl/Specht modules which are ‘generically’ placed (within the associated alcove geometries) to cyclotomic Hecke and diagrammatic Cherednik algebras. Finally, we provide evidence for a higher-level analogue of the classical Lusztig conjecture over fields of sufficiently large characteristic.
@article{10_1017_fms_2018_9,
     author = {C. BOWMAN and A. G. COX},
     title = {MODULAR {DECOMPOSITION} {NUMBERS} {OF} {CYCLOTOMIC} {HECKE} {AND} {DIAGRAMMATIC} {CHEREDNIK} {ALGEBRAS:} {A} {PATH} {THEORETIC} {APPROACH}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.9/}
}
TY  - JOUR
AU  - C. BOWMAN
AU  - A. G. COX
TI  - MODULAR DECOMPOSITION NUMBERS OF CYCLOTOMIC HECKE AND DIAGRAMMATIC CHEREDNIK ALGEBRAS: A PATH THEORETIC APPROACH
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.9/
DO  - 10.1017/fms.2018.9
LA  - en
ID  - 10_1017_fms_2018_9
ER  - 
%0 Journal Article
%A C. BOWMAN
%A A. G. COX
%T MODULAR DECOMPOSITION NUMBERS OF CYCLOTOMIC HECKE AND DIAGRAMMATIC CHEREDNIK ALGEBRAS: A PATH THEORETIC APPROACH
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.9/
%R 10.1017/fms.2018.9
%G en
%F 10_1017_fms_2018_9
C. BOWMAN; A. G. COX. MODULAR DECOMPOSITION NUMBERS OF CYCLOTOMIC HECKE AND DIAGRAMMATIC CHEREDNIK ALGEBRAS: A PATH THEORETIC APPROACH. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.9

Cité par Sources :