CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM
Forum of Mathematics, Sigma, Tome 6 (2018)
Voir la notice de l'article provenant de la source Cambridge University Press
We consider the global behaviour for large solutions of the Dirac–Klein–Gordon system in critical spaces in dimension $1+3$ . In particular, we show that bounded solutions exist globally in time and scatter, provided that a controlling space–time Lebesgue norm is finite. A crucial step is to prove nonlinear estimates that exploit the dichotomy between transversality and null structure, and furthermore involve the controlling norm.
@article{10_1017_fms_2018_8,
author = {TIMOTHY CANDY and SEBASTIAN HERR},
title = {CONDITIONAL {LARGE} {INITIAL} {DATA} {SCATTERING} {RESULTS} {FOR} {THE} {DIRAC{\textendash}KLEIN{\textendash}GORDON} {SYSTEM}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {6},
year = {2018},
doi = {10.1017/fms.2018.8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.8/}
}
TY - JOUR AU - TIMOTHY CANDY AU - SEBASTIAN HERR TI - CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM JO - Forum of Mathematics, Sigma PY - 2018 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.8/ DO - 10.1017/fms.2018.8 LA - en ID - 10_1017_fms_2018_8 ER -
%0 Journal Article %A TIMOTHY CANDY %A SEBASTIAN HERR %T CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM %J Forum of Mathematics, Sigma %D 2018 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.8/ %R 10.1017/fms.2018.8 %G en %F 10_1017_fms_2018_8
TIMOTHY CANDY; SEBASTIAN HERR. CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.8
Cité par Sources :