CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider the global behaviour for large solutions of the Dirac–Klein–Gordon system in critical spaces in dimension $1+3$ . In particular, we show that bounded solutions exist globally in time and scatter, provided that a controlling space–time Lebesgue norm is finite. A crucial step is to prove nonlinear estimates that exploit the dichotomy between transversality and null structure, and furthermore involve the controlling norm.
@article{10_1017_fms_2018_8,
     author = {TIMOTHY CANDY and SEBASTIAN HERR},
     title = {CONDITIONAL {LARGE} {INITIAL} {DATA} {SCATTERING} {RESULTS} {FOR} {THE} {DIRAC{\textendash}KLEIN{\textendash}GORDON} {SYSTEM}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.8/}
}
TY  - JOUR
AU  - TIMOTHY CANDY
AU  - SEBASTIAN HERR
TI  - CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.8/
DO  - 10.1017/fms.2018.8
LA  - en
ID  - 10_1017_fms_2018_8
ER  - 
%0 Journal Article
%A TIMOTHY CANDY
%A SEBASTIAN HERR
%T CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.8/
%R 10.1017/fms.2018.8
%G en
%F 10_1017_fms_2018_8
TIMOTHY CANDY; SEBASTIAN HERR. CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.8

Cité par Sources :