ANY CYCLIC QUADRILATERAL CAN BE INSCRIBED IN ANY CLOSED CONVEX SMOOTH CURVE
Forum of Mathematics, Sigma, Tome 6 (2018)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove that any cyclic quadrilateral can be inscribed in any closed convex $C^{1}$ -curve. The smoothness condition is not required if the quadrilateral is a rectangle.
@article{10_1017_fms_2018_7,
author = {ARSENIY AKOPYAN and SERGEY AVVAKUMOV},
title = {ANY {CYCLIC} {QUADRILATERAL} {CAN} {BE} {INSCRIBED} {IN} {ANY} {CLOSED} {CONVEX} {SMOOTH} {CURVE}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {6},
year = {2018},
doi = {10.1017/fms.2018.7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.7/}
}
TY - JOUR AU - ARSENIY AKOPYAN AU - SERGEY AVVAKUMOV TI - ANY CYCLIC QUADRILATERAL CAN BE INSCRIBED IN ANY CLOSED CONVEX SMOOTH CURVE JO - Forum of Mathematics, Sigma PY - 2018 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.7/ DO - 10.1017/fms.2018.7 LA - en ID - 10_1017_fms_2018_7 ER -
%0 Journal Article %A ARSENIY AKOPYAN %A SERGEY AVVAKUMOV %T ANY CYCLIC QUADRILATERAL CAN BE INSCRIBED IN ANY CLOSED CONVEX SMOOTH CURVE %J Forum of Mathematics, Sigma %D 2018 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.7/ %R 10.1017/fms.2018.7 %G en %F 10_1017_fms_2018_7
ARSENIY AKOPYAN; SERGEY AVVAKUMOV. ANY CYCLIC QUADRILATERAL CAN BE INSCRIBED IN ANY CLOSED CONVEX SMOOTH CURVE. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.7
Cité par Sources :