ANY CYCLIC QUADRILATERAL CAN BE INSCRIBED IN ANY CLOSED CONVEX SMOOTH CURVE
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that any cyclic quadrilateral can be inscribed in any closed convex $C^{1}$ -curve. The smoothness condition is not required if the quadrilateral is a rectangle.
@article{10_1017_fms_2018_7,
     author = {ARSENIY AKOPYAN and SERGEY AVVAKUMOV},
     title = {ANY {CYCLIC} {QUADRILATERAL} {CAN} {BE} {INSCRIBED} {IN} {ANY} {CLOSED} {CONVEX} {SMOOTH} {CURVE}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.7/}
}
TY  - JOUR
AU  - ARSENIY AKOPYAN
AU  - SERGEY AVVAKUMOV
TI  - ANY CYCLIC QUADRILATERAL CAN BE INSCRIBED IN ANY CLOSED CONVEX SMOOTH CURVE
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.7/
DO  - 10.1017/fms.2018.7
LA  - en
ID  - 10_1017_fms_2018_7
ER  - 
%0 Journal Article
%A ARSENIY AKOPYAN
%A SERGEY AVVAKUMOV
%T ANY CYCLIC QUADRILATERAL CAN BE INSCRIBED IN ANY CLOSED CONVEX SMOOTH CURVE
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.7/
%R 10.1017/fms.2018.7
%G en
%F 10_1017_fms_2018_7
ARSENIY AKOPYAN; SERGEY AVVAKUMOV. ANY CYCLIC QUADRILATERAL CAN BE INSCRIBED IN ANY CLOSED CONVEX SMOOTH CURVE. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.7

Cité par Sources :