RAPOPORT–ZINK SPACES OF HODGE TYPE
Forum of Mathematics, Sigma, Tome 6 (2018)
Voir la notice de l'article provenant de la source Cambridge University Press
When $p>2$ , we construct a Hodge-type analogue of Rapoport–Zink spaces under the unramifiedness assumption, as formal schemes parametrizing ‘deformations’ (up to quasi-isogeny) of $p$ -divisible groups with certain crystalline Tate tensors. We also define natural rigid analytic towers with expected extra structure, providing more examples of ‘local Shimura varieties’ conjectured by Rapoport and Viehmann.
@article{10_1017_fms_2018_6,
author = {WANSU KIM},
title = {RAPOPORT{\textendash}ZINK {SPACES} {OF} {HODGE} {TYPE}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {6},
year = {2018},
doi = {10.1017/fms.2018.6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.6/}
}
WANSU KIM. RAPOPORT–ZINK SPACES OF HODGE TYPE. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.6
Cité par Sources :