RAPOPORT–ZINK SPACES OF HODGE TYPE
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

When $p>2$ , we construct a Hodge-type analogue of Rapoport–Zink spaces under the unramifiedness assumption, as formal schemes parametrizing ‘deformations’ (up to quasi-isogeny) of $p$ -divisible groups with certain crystalline Tate tensors. We also define natural rigid analytic towers with expected extra structure, providing more examples of ‘local Shimura varieties’ conjectured by Rapoport and Viehmann.
@article{10_1017_fms_2018_6,
     author = {WANSU KIM},
     title = {RAPOPORT{\textendash}ZINK {SPACES} {OF} {HODGE} {TYPE}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.6/}
}
TY  - JOUR
AU  - WANSU KIM
TI  - RAPOPORT–ZINK SPACES OF HODGE TYPE
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.6/
DO  - 10.1017/fms.2018.6
LA  - en
ID  - 10_1017_fms_2018_6
ER  - 
%0 Journal Article
%A WANSU KIM
%T RAPOPORT–ZINK SPACES OF HODGE TYPE
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.6/
%R 10.1017/fms.2018.6
%G en
%F 10_1017_fms_2018_6
WANSU KIM. RAPOPORT–ZINK SPACES OF HODGE TYPE. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.6

Cité par Sources :