LOCAL SYSTEMS ON COMPLEMENTS OF ARRANGEMENTS OF SMOOTH, COMPLEX ALGEBRAIC HYPERSURFACES
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider smooth, complex quasiprojective varieties $U$ that admit a compactification with a boundary, which is an arrangement of smooth algebraic hypersurfaces. If the hypersurfaces intersect locally like hyperplanes, and the relative interiors of the hypersurfaces are Stein manifolds, we prove that the cohomology of certain local systems on $U$ vanishes. As an application, we show that complements of linear, toric, and elliptic arrangements are both duality and abelian duality spaces.
@article{10_1017_fms_2018_5,
     author = {GRAHAM DENHAM and ALEXANDER I. SUCIU},
     title = {LOCAL {SYSTEMS} {ON} {COMPLEMENTS} {OF} {ARRANGEMENTS} {OF} {SMOOTH,} {COMPLEX} {ALGEBRAIC} {HYPERSURFACES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.5/}
}
TY  - JOUR
AU  - GRAHAM DENHAM
AU  - ALEXANDER I. SUCIU
TI  - LOCAL SYSTEMS ON COMPLEMENTS OF ARRANGEMENTS OF SMOOTH, COMPLEX ALGEBRAIC HYPERSURFACES
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.5/
DO  - 10.1017/fms.2018.5
LA  - en
ID  - 10_1017_fms_2018_5
ER  - 
%0 Journal Article
%A GRAHAM DENHAM
%A ALEXANDER I. SUCIU
%T LOCAL SYSTEMS ON COMPLEMENTS OF ARRANGEMENTS OF SMOOTH, COMPLEX ALGEBRAIC HYPERSURFACES
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.5/
%R 10.1017/fms.2018.5
%G en
%F 10_1017_fms_2018_5
GRAHAM DENHAM; ALEXANDER I. SUCIU. LOCAL SYSTEMS ON COMPLEMENTS OF ARRANGEMENTS OF SMOOTH, COMPLEX ALGEBRAIC HYPERSURFACES. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.5

Cité par Sources :