LOCAL SYSTEMS ON COMPLEMENTS OF ARRANGEMENTS OF SMOOTH, COMPLEX ALGEBRAIC HYPERSURFACES
Forum of Mathematics, Sigma, Tome 6 (2018)
Voir la notice de l'article provenant de la source Cambridge University Press
We consider smooth, complex quasiprojective varieties $U$ that admit a compactification with a boundary, which is an arrangement of smooth algebraic hypersurfaces. If the hypersurfaces intersect locally like hyperplanes, and the relative interiors of the hypersurfaces are Stein manifolds, we prove that the cohomology of certain local systems on $U$ vanishes. As an application, we show that complements of linear, toric, and elliptic arrangements are both duality and abelian duality spaces.
@article{10_1017_fms_2018_5,
author = {GRAHAM DENHAM and ALEXANDER I. SUCIU},
title = {LOCAL {SYSTEMS} {ON} {COMPLEMENTS} {OF} {ARRANGEMENTS} {OF} {SMOOTH,} {COMPLEX} {ALGEBRAIC} {HYPERSURFACES}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {6},
year = {2018},
doi = {10.1017/fms.2018.5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.5/}
}
TY - JOUR AU - GRAHAM DENHAM AU - ALEXANDER I. SUCIU TI - LOCAL SYSTEMS ON COMPLEMENTS OF ARRANGEMENTS OF SMOOTH, COMPLEX ALGEBRAIC HYPERSURFACES JO - Forum of Mathematics, Sigma PY - 2018 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.5/ DO - 10.1017/fms.2018.5 LA - en ID - 10_1017_fms_2018_5 ER -
%0 Journal Article %A GRAHAM DENHAM %A ALEXANDER I. SUCIU %T LOCAL SYSTEMS ON COMPLEMENTS OF ARRANGEMENTS OF SMOOTH, COMPLEX ALGEBRAIC HYPERSURFACES %J Forum of Mathematics, Sigma %D 2018 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.5/ %R 10.1017/fms.2018.5 %G en %F 10_1017_fms_2018_5
GRAHAM DENHAM; ALEXANDER I. SUCIU. LOCAL SYSTEMS ON COMPLEMENTS OF ARRANGEMENTS OF SMOOTH, COMPLEX ALGEBRAIC HYPERSURFACES. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.5
Cité par Sources :