REGULARIZATION OF NON-NORMAL MATRICES BY GAUSSIAN NOISE—THE BANDED TOEPLITZ AND TWISTED TOEPLITZ CASES
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider the spectrum of additive, polynomially vanishing random perturbations of deterministic matrices, as follows. Let $M_{N}$ be a deterministic $N\times N$ matrix, and let $G_{N}$ be a complex Ginibre matrix. We consider the matrix ${\mathcal{M}}_{N}=M_{N}+N^{-\unicode[STIX]{x1D6FE}}G_{N}$, where $\unicode[STIX]{x1D6FE}>1/2$. With $L_{N}$ the empirical measure of eigenvalues of ${\mathcal{M}}_{N}$, we provide a general deterministic equivalence theorem that ties $L_{N}$ to the singular values of $z-M_{N}$, with $z\in \mathbb{C}$. We then compute the limit of $L_{N}$ when $M_{N}$ is an upper-triangular Toeplitz matrix of finite symbol: if $M_{N}=\sum _{i=0}^{\mathfrak{d}}a_{i}J^{i}$ where $\mathfrak{d}$ is fixed, $a_{i}\in \mathbb{C}$ are deterministic scalars and $J$ is the nilpotent matrix $J(i,j)=\mathbf{1}_{j=i+1}$, then $L_{N}$ converges, as $N\rightarrow \infty$, to the law of $\sum _{i=0}^{\mathfrak{d}}a_{i}U^{i}$ where $U$ is a uniform random variable on the unit circle in the complex plane. We also consider the case of slowly varying diagonals (twisted Toeplitz matrices), and, when $\mathfrak{d}=1$, also of independent and identically distributed entries on the diagonals in $M_{N}$.
@article{10_1017_fms_2018_29,
     author = {ANIRBAN BASAK and ELLIOT PAQUETTE and OFER ZEITOUNI},
     title = {REGULARIZATION {OF} {NON-NORMAL} {MATRICES} {BY} {GAUSSIAN} {NOISE{\textemdash}THE} {BANDED} {TOEPLITZ} {AND} {TWISTED} {TOEPLITZ} {CASES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2018.29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.29/}
}
TY  - JOUR
AU  - ANIRBAN BASAK
AU  - ELLIOT PAQUETTE
AU  - OFER ZEITOUNI
TI  - REGULARIZATION OF NON-NORMAL MATRICES BY GAUSSIAN NOISE—THE BANDED TOEPLITZ AND TWISTED TOEPLITZ CASES
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.29/
DO  - 10.1017/fms.2018.29
LA  - en
ID  - 10_1017_fms_2018_29
ER  - 
%0 Journal Article
%A ANIRBAN BASAK
%A ELLIOT PAQUETTE
%A OFER ZEITOUNI
%T REGULARIZATION OF NON-NORMAL MATRICES BY GAUSSIAN NOISE—THE BANDED TOEPLITZ AND TWISTED TOEPLITZ CASES
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.29/
%R 10.1017/fms.2018.29
%G en
%F 10_1017_fms_2018_29
ANIRBAN BASAK; ELLIOT PAQUETTE; OFER ZEITOUNI. REGULARIZATION OF NON-NORMAL MATRICES BY GAUSSIAN NOISE—THE BANDED TOEPLITZ AND TWISTED TOEPLITZ CASES. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2018.29

Cité par Sources :