GL-EQUIVARIANT MODULES OVER POLYNOMIAL RINGS IN INFINITELY MANY VARIABLES. II
Forum of Mathematics, Sigma, Tome 7 (2019)
Voir la notice de l'article provenant de la source Cambridge University Press
Twisted commutative algebras (tca’s) have played an important role in the nascent field of representation stability. Let $A_{d}$ be the tca freely generated by $d$ indeterminates of degree 1. In a previous paper, we determined the structure of the category of $A_{1}$-modules (which is equivalent to the category of $\mathbf{FI}$-modules). In this paper, we establish analogous results for the category of $A_{d}$-modules, for any $d$. Modules over $A_{d}$ are closely related to the structures used by the authors in previous works studying syzygies of Segre and Veronese embeddings, and we hope the results of this paper will eventually lead to improvements on those works. Our results also have implications in asymptotic commutative algebra.
@article{10_1017_fms_2018_27,
author = {STEVEN V SAM and ANDREW SNOWDEN},
title = {GL-EQUIVARIANT {MODULES} {OVER} {POLYNOMIAL} {RINGS} {IN} {INFINITELY} {MANY} {VARIABLES.} {II}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {7},
year = {2019},
doi = {10.1017/fms.2018.27},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.27/}
}
TY - JOUR AU - STEVEN V SAM AU - ANDREW SNOWDEN TI - GL-EQUIVARIANT MODULES OVER POLYNOMIAL RINGS IN INFINITELY MANY VARIABLES. II JO - Forum of Mathematics, Sigma PY - 2019 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.27/ DO - 10.1017/fms.2018.27 LA - en ID - 10_1017_fms_2018_27 ER -
%0 Journal Article %A STEVEN V SAM %A ANDREW SNOWDEN %T GL-EQUIVARIANT MODULES OVER POLYNOMIAL RINGS IN INFINITELY MANY VARIABLES. II %J Forum of Mathematics, Sigma %D 2019 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.27/ %R 10.1017/fms.2018.27 %G en %F 10_1017_fms_2018_27
STEVEN V SAM; ANDREW SNOWDEN. GL-EQUIVARIANT MODULES OVER POLYNOMIAL RINGS IN INFINITELY MANY VARIABLES. II. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2018.27
Cité par Sources :