SECOND MOMENTS IN THE GENERALIZEDGAUSS CIRCLE PROBLEM
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 6 (2018)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We study the Dirichlet series associated to $P_{k}(n)^{2}$, where $P_{k}(n)$ is the discrepancy between the volume of the $k$-dimensional sphere of radius $\sqrt{n}$ and the number of integer lattice points contained in that sphere. We prove asymptotics with improved power-saving error terms for smoothed sums, including $\sum P_{k}(n)^{2}e^{-n/X}$ and the Laplace transform $\int _{0}^{\infty }P_{k}(t)^{2}e^{-t/X}\,dt$, in dimensions $k\geqslant 3$. We also obtain main terms and power-saving error terms for the sharp sums $\sum _{n\leqslant X}P_{k}(n)^{2}$, along with similar results for the sharp integral $\int _{0}^{X}P_{3}(t)^{2}\,dt$. This includes producing the first power-saving error term in mean square for the dimension-3 Gauss circle problem.
            
            
            
          
        
      @article{10_1017_fms_2018_26,
     author = {THOMAS A. HULSE and CHAN IEONG KUAN and DAVID LOWRY-DUDA and ALEXANDER WALKER},
     title = {SECOND {MOMENTS} {IN} {THE} {GENERALIZEDGAUSS} {CIRCLE} {PROBLEM}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.26},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.26/}
}
                      
                      
                    TY - JOUR AU - THOMAS A. HULSE AU - CHAN IEONG KUAN AU - DAVID LOWRY-DUDA AU - ALEXANDER WALKER TI - SECOND MOMENTS IN THE GENERALIZEDGAUSS CIRCLE PROBLEM JO - Forum of Mathematics, Sigma PY - 2018 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.26/ DO - 10.1017/fms.2018.26 LA - en ID - 10_1017_fms_2018_26 ER -
%0 Journal Article %A THOMAS A. HULSE %A CHAN IEONG KUAN %A DAVID LOWRY-DUDA %A ALEXANDER WALKER %T SECOND MOMENTS IN THE GENERALIZEDGAUSS CIRCLE PROBLEM %J Forum of Mathematics, Sigma %D 2018 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.26/ %R 10.1017/fms.2018.26 %G en %F 10_1017_fms_2018_26
THOMAS A. HULSE; CHAN IEONG KUAN; DAVID LOWRY-DUDA; ALEXANDER WALKER. SECOND MOMENTS IN THE GENERALIZEDGAUSS CIRCLE PROBLEM. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.26
Cité par Sources :