EULER SYSTEMS FOR HILBERT MODULAR SURFACES
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

We construct an Euler system—a compatible family of global cohomology classes—for the Galois representations appearing in the geometry of Hilbert modular surfaces. If a conjecture of Bloch and Kato on injectivity of regulator maps holds, this Euler system is nontrivial, and we deduce bounds towards the Iwasawa main conjecture for these Galois representations.
@article{10_1017_fms_2018_23,
     author = {ANTONIO LEI and DAVID LOEFFLER and SARAH LIVIA ZERBES},
     title = {EULER {SYSTEMS} {FOR} {HILBERT} {MODULAR} {SURFACES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.23/}
}
TY  - JOUR
AU  - ANTONIO LEI
AU  - DAVID LOEFFLER
AU  - SARAH LIVIA ZERBES
TI  - EULER SYSTEMS FOR HILBERT MODULAR SURFACES
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.23/
DO  - 10.1017/fms.2018.23
LA  - en
ID  - 10_1017_fms_2018_23
ER  - 
%0 Journal Article
%A ANTONIO LEI
%A DAVID LOEFFLER
%A SARAH LIVIA ZERBES
%T EULER SYSTEMS FOR HILBERT MODULAR SURFACES
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.23/
%R 10.1017/fms.2018.23
%G en
%F 10_1017_fms_2018_23
ANTONIO LEI; DAVID LOEFFLER; SARAH LIVIA ZERBES. EULER SYSTEMS FOR HILBERT MODULAR SURFACES. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.23

Cité par Sources :