EULER SYSTEMS FOR HILBERT MODULAR SURFACES
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 6 (2018)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We construct an Euler system—a compatible family of global cohomology classes—for the Galois representations appearing in the geometry of Hilbert modular surfaces. If a conjecture of Bloch and Kato on injectivity of regulator maps holds, this Euler system is nontrivial, and we deduce bounds towards the Iwasawa main conjecture for these Galois representations.
            
            
            
          
        
      @article{10_1017_fms_2018_23,
     author = {ANTONIO LEI and DAVID LOEFFLER and SARAH LIVIA ZERBES},
     title = {EULER {SYSTEMS} {FOR} {HILBERT} {MODULAR} {SURFACES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.23/}
}
                      
                      
                    TY - JOUR AU - ANTONIO LEI AU - DAVID LOEFFLER AU - SARAH LIVIA ZERBES TI - EULER SYSTEMS FOR HILBERT MODULAR SURFACES JO - Forum of Mathematics, Sigma PY - 2018 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.23/ DO - 10.1017/fms.2018.23 LA - en ID - 10_1017_fms_2018_23 ER -
ANTONIO LEI; DAVID LOEFFLER; SARAH LIVIA ZERBES. EULER SYSTEMS FOR HILBERT MODULAR SURFACES. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.23
Cité par Sources :