COMPACTIFICATIONS OF SUBSCHEMES OF INTEGRAL MODELS OF SHIMURA VARIETIES
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 6 (2018)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We study several kinds of subschemes of mixed characteristic models of Shimura varieties which admit good (partial) toroidal and minimal compactifications, with familiar boundary stratifications and formal local structures, as if they were Shimura varieties in characteristic zero. We also generalize Koecher’s principle and the relative vanishing of subcanonical extensions for coherent sheaves, and Pink’s and Morel’s formulas for étale sheaves, to the context of such subschemes.
            
            
            
          
        
      @article{10_1017_fms_2018_20,
     author = {KAI-WEN LAN and BENO\^IT STROH},
     title = {COMPACTIFICATIONS {OF} {SUBSCHEMES} {OF} {INTEGRAL} {MODELS} {OF} {SHIMURA} {VARIETIES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.20/}
}
                      
                      
                    TY - JOUR AU - KAI-WEN LAN AU - BENOÎT STROH TI - COMPACTIFICATIONS OF SUBSCHEMES OF INTEGRAL MODELS OF SHIMURA VARIETIES JO - Forum of Mathematics, Sigma PY - 2018 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.20/ DO - 10.1017/fms.2018.20 LA - en ID - 10_1017_fms_2018_20 ER -
KAI-WEN LAN; BENOÎT STROH. COMPACTIFICATIONS OF SUBSCHEMES OF INTEGRAL MODELS OF SHIMURA VARIETIES. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.20
Cité par Sources :