COMPACTIFICATIONS OF SUBSCHEMES OF INTEGRAL MODELS OF SHIMURA VARIETIES
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

We study several kinds of subschemes of mixed characteristic models of Shimura varieties which admit good (partial) toroidal and minimal compactifications, with familiar boundary stratifications and formal local structures, as if they were Shimura varieties in characteristic zero. We also generalize Koecher’s principle and the relative vanishing of subcanonical extensions for coherent sheaves, and Pink’s and Morel’s formulas for étale sheaves, to the context of such subschemes.
@article{10_1017_fms_2018_20,
     author = {KAI-WEN LAN and BENO\^IT STROH},
     title = {COMPACTIFICATIONS {OF} {SUBSCHEMES} {OF} {INTEGRAL} {MODELS} {OF} {SHIMURA} {VARIETIES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.20/}
}
TY  - JOUR
AU  - KAI-WEN LAN
AU  - BENOÎT STROH
TI  - COMPACTIFICATIONS OF SUBSCHEMES OF INTEGRAL MODELS OF SHIMURA VARIETIES
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.20/
DO  - 10.1017/fms.2018.20
LA  - en
ID  - 10_1017_fms_2018_20
ER  - 
%0 Journal Article
%A KAI-WEN LAN
%A BENOÎT STROH
%T COMPACTIFICATIONS OF SUBSCHEMES OF INTEGRAL MODELS OF SHIMURA VARIETIES
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.20/
%R 10.1017/fms.2018.20
%G en
%F 10_1017_fms_2018_20
KAI-WEN LAN; BENOÎT STROH. COMPACTIFICATIONS OF SUBSCHEMES OF INTEGRAL MODELS OF SHIMURA VARIETIES. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.20

Cité par Sources :