PRESENTATIONS OF AFFINE KAC–MOODY GROUPS
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

How many generators and relations does $\text{SL}\,_{n}(\mathbb{F}_{q}[t,t^{-1}])$ need? In this paper we exhibit its explicit presentation with $9$ generators and $44$ relations. We investigate presentations of affine Kac–Moody groups over finite fields. Our goal is to derive finite presentations, independent of the field and with as few generators and relations as we can achieve. It turns out that any simply connected affine Kac–Moody group over a finite field has a presentation with at most 11 generators and 70 relations. We describe these presentations explicitly type by type. As a consequence, we derive explicit presentations of Chevalley groups $G(\mathbb{F}_{q}[t,t^{-1}])$ and explicit profinite presentations of profinite Chevalley groups $G(\mathbb{F}_{q}[[t]])$.
@article{10_1017_fms_2018_19,
     author = {INNA CAPDEBOSCQ and KARINA KIRKINA and DMITRIY RUMYNIN},
     title = {PRESENTATIONS {OF} {AFFINE} {KAC{\textendash}MOODY} {GROUPS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.19/}
}
TY  - JOUR
AU  - INNA CAPDEBOSCQ
AU  - KARINA KIRKINA
AU  - DMITRIY RUMYNIN
TI  - PRESENTATIONS OF AFFINE KAC–MOODY GROUPS
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.19/
DO  - 10.1017/fms.2018.19
LA  - en
ID  - 10_1017_fms_2018_19
ER  - 
%0 Journal Article
%A INNA CAPDEBOSCQ
%A KARINA KIRKINA
%A DMITRIY RUMYNIN
%T PRESENTATIONS OF AFFINE KAC–MOODY GROUPS
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.19/
%R 10.1017/fms.2018.19
%G en
%F 10_1017_fms_2018_19
INNA CAPDEBOSCQ; KARINA KIRKINA; DMITRIY RUMYNIN. PRESENTATIONS OF AFFINE KAC–MOODY GROUPS. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.19

Cité par Sources :