UNLIKELY INTERSECTIONS IN FINITE CHARACTERISTIC
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

We present a heuristic argument based on Honda–Tate theory against many conjectures in ‘unlikely intersections’ over the algebraic closure of a finite field; notably, we conjecture that every abelian variety of dimension 4 is isogenous to a Jacobian. Using methods of additive combinatorics, we answer a related question of Chai and Oort where the ambient Shimura variety is a power of the modular curve.
@article{10_1017_fms_2018_15,
     author = {ANANTH N. SHANKAR and JACOB TSIMERMAN},
     title = {UNLIKELY {INTERSECTIONS} {IN} {FINITE} {CHARACTERISTIC}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.15/}
}
TY  - JOUR
AU  - ANANTH N. SHANKAR
AU  - JACOB TSIMERMAN
TI  - UNLIKELY INTERSECTIONS IN FINITE CHARACTERISTIC
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.15/
DO  - 10.1017/fms.2018.15
LA  - en
ID  - 10_1017_fms_2018_15
ER  - 
%0 Journal Article
%A ANANTH N. SHANKAR
%A JACOB TSIMERMAN
%T UNLIKELY INTERSECTIONS IN FINITE CHARACTERISTIC
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.15/
%R 10.1017/fms.2018.15
%G en
%F 10_1017_fms_2018_15
ANANTH N. SHANKAR; JACOB TSIMERMAN. UNLIKELY INTERSECTIONS IN FINITE CHARACTERISTIC. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.15

Cité par Sources :