WHEN DOES THE BOMBIERI–VINOGRADOV THEOREM HOLD FOR A GIVEN MULTIPLICATIVE FUNCTION?
Forum of Mathematics, Sigma, Tome 6 (2018)
Voir la notice de l'article provenant de la source Cambridge University Press
Let $f$ and $g$ be 1-bounded multiplicative functions for which $f\ast g=1_{.=1}$. The Bombieri–Vinogradov theorem holds for both $f$ and $g$ if and only if the Siegel–Walfisz criterion holds for both $f$ and $g$, and the Bombieri–Vinogradov theorem holds for $f$ restricted to the primes.
@article{10_1017_fms_2018_14,
author = {ANDREW GRANVILLE and XUANCHENG SHAO},
title = {WHEN {DOES} {THE} {BOMBIERI{\textendash}VINOGRADOV} {THEOREM} {HOLD} {FOR} {A} {GIVEN} {MULTIPLICATIVE} {FUNCTION?}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {6},
year = {2018},
doi = {10.1017/fms.2018.14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.14/}
}
TY - JOUR AU - ANDREW GRANVILLE AU - XUANCHENG SHAO TI - WHEN DOES THE BOMBIERI–VINOGRADOV THEOREM HOLD FOR A GIVEN MULTIPLICATIVE FUNCTION? JO - Forum of Mathematics, Sigma PY - 2018 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.14/ DO - 10.1017/fms.2018.14 LA - en ID - 10_1017_fms_2018_14 ER -
%0 Journal Article %A ANDREW GRANVILLE %A XUANCHENG SHAO %T WHEN DOES THE BOMBIERI–VINOGRADOV THEOREM HOLD FOR A GIVEN MULTIPLICATIVE FUNCTION? %J Forum of Mathematics, Sigma %D 2018 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.14/ %R 10.1017/fms.2018.14 %G en %F 10_1017_fms_2018_14
ANDREW GRANVILLE; XUANCHENG SHAO. WHEN DOES THE BOMBIERI–VINOGRADOV THEOREM HOLD FOR A GIVEN MULTIPLICATIVE FUNCTION?. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.14
Cité par Sources :