WHEN DOES THE BOMBIERI–VINOGRADOV THEOREM HOLD FOR A GIVEN MULTIPLICATIVE FUNCTION?
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $f$ and $g$ be 1-bounded multiplicative functions for which $f\ast g=1_{.=1}$. The Bombieri–Vinogradov theorem holds for both $f$ and $g$ if and only if the Siegel–Walfisz criterion holds for both $f$ and $g$, and the Bombieri–Vinogradov theorem holds for $f$ restricted to the primes.
@article{10_1017_fms_2018_14,
     author = {ANDREW GRANVILLE and XUANCHENG SHAO},
     title = {WHEN {DOES} {THE} {BOMBIERI{\textendash}VINOGRADOV} {THEOREM} {HOLD} {FOR} {A} {GIVEN} {MULTIPLICATIVE} {FUNCTION?}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.14/}
}
TY  - JOUR
AU  - ANDREW GRANVILLE
AU  - XUANCHENG SHAO
TI  - WHEN DOES THE BOMBIERI–VINOGRADOV THEOREM HOLD FOR A GIVEN MULTIPLICATIVE FUNCTION?
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.14/
DO  - 10.1017/fms.2018.14
LA  - en
ID  - 10_1017_fms_2018_14
ER  - 
%0 Journal Article
%A ANDREW GRANVILLE
%A XUANCHENG SHAO
%T WHEN DOES THE BOMBIERI–VINOGRADOV THEOREM HOLD FOR A GIVEN MULTIPLICATIVE FUNCTION?
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.14/
%R 10.1017/fms.2018.14
%G en
%F 10_1017_fms_2018_14
ANDREW GRANVILLE; XUANCHENG SHAO. WHEN DOES THE BOMBIERI–VINOGRADOV THEOREM HOLD FOR A GIVEN MULTIPLICATIVE FUNCTION?. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.14

Cité par Sources :