SINGULARITIES OF THE BIEXTENSION METRIC FOR FAMILIES OF ABELIAN VARIETIES
Forum of Mathematics, Sigma, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

In this paper we study the singularities of the invariant metric of the Poincaré bundle over a family of abelian varieties and their duals over a base of arbitrary dimension. As an application of this study we prove the effectiveness of the height jump divisors for families of pointed abelian varieties. The effectiveness of the height jump divisor was conjectured by Hain in the more general case of variations of polarized Hodge structures of weight $-1$ .
@article{10_1017_fms_2018_13,
     author = {JOS\'E IGNACIO BURGOS GIL and DAVID HOLMES and ROBIN DE JONG},
     title = {SINGULARITIES {OF} {THE} {BIEXTENSION} {METRIC} {FOR} {FAMILIES} {OF} {ABELIAN} {VARIETIES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fms.2018.13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.13/}
}
TY  - JOUR
AU  - JOSÉ IGNACIO BURGOS GIL
AU  - DAVID HOLMES
AU  - ROBIN DE JONG
TI  - SINGULARITIES OF THE BIEXTENSION METRIC FOR FAMILIES OF ABELIAN VARIETIES
JO  - Forum of Mathematics, Sigma
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.13/
DO  - 10.1017/fms.2018.13
LA  - en
ID  - 10_1017_fms_2018_13
ER  - 
%0 Journal Article
%A JOSÉ IGNACIO BURGOS GIL
%A DAVID HOLMES
%A ROBIN DE JONG
%T SINGULARITIES OF THE BIEXTENSION METRIC FOR FAMILIES OF ABELIAN VARIETIES
%J Forum of Mathematics, Sigma
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2018.13/
%R 10.1017/fms.2018.13
%G en
%F 10_1017_fms_2018_13
JOSÉ IGNACIO BURGOS GIL; DAVID HOLMES; ROBIN DE JONG. SINGULARITIES OF THE BIEXTENSION METRIC FOR FAMILIES OF ABELIAN VARIETIES. Forum of Mathematics, Sigma, Tome 6 (2018). doi: 10.1017/fms.2018.13

Cité par Sources :