THE EXPECTED JAGGEDNESS OF ORDER IDEALS
Forum of Mathematics, Sigma, Tome 5 (2017)
Voir la notice de l'article provenant de la source Cambridge University Press
The jaggedness of an order ideal $I$ in a poset $P$ is the number of maximal elements in $I$ plus the number of minimal elements of $P$ not in $I$ . A probability distribution on the set of order ideals of $P$ is toggle-symmetric if for every $p\in P$ , the probability that $p$ is maximal in $I$ equals the probability that $p$ is minimal not in $I$ . In this paper, we prove a formula for the expected jaggedness of an order ideal of $P$ under any toggle-symmetric probability distribution when $P$ is the poset of boxes in a skew Young diagram. Our result extends the main combinatorial theorem of Chan–López–Pflueger–Teixidor [Trans. Amer. Math. Soc., forthcoming. 2015, arXiv:1506.00516], who used an expected jaggedness computation as a key ingredient to prove an algebro-geometric formula; and it has applications to homomesies, in the sense of Propp–Roby, of the antichain cardinality statistic for order ideals in partially ordered sets.
@article{10_1017_fms_2017_5,
author = {MELODY CHAN and SHAHRZAD HADDADAN and SAM HOPKINS and LUCA MOCI},
title = {THE {EXPECTED} {JAGGEDNESS} {OF} {ORDER} {IDEALS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {5},
year = {2017},
doi = {10.1017/fms.2017.5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.5/}
}
TY - JOUR AU - MELODY CHAN AU - SHAHRZAD HADDADAN AU - SAM HOPKINS AU - LUCA MOCI TI - THE EXPECTED JAGGEDNESS OF ORDER IDEALS JO - Forum of Mathematics, Sigma PY - 2017 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.5/ DO - 10.1017/fms.2017.5 LA - en ID - 10_1017_fms_2017_5 ER -
MELODY CHAN; SHAHRZAD HADDADAN; SAM HOPKINS; LUCA MOCI. THE EXPECTED JAGGEDNESS OF ORDER IDEALS. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.5
Cité par Sources :