HIGHER RANDOMNESS AND GENERICITY
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 5 (2017)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We use concepts of continuous higher randomness, developed in Bienvenu et al. [‘Continuous higher randomness’, J. Math. Log. 17(1) (2017).], to investigate $\unicode[STIX]{x1D6F1}_{1}^{1}$ -randomness. We discuss lowness for $\unicode[STIX]{x1D6F1}_{1}^{1}$ -randomness, cupping with $\unicode[STIX]{x1D6F1}_{1}^{1}$ -random sequences, and an analogue of the Hirschfeldt–Miller characterization of weak 2-randomness. We also consider analogous questions for Cohen forcing, concentrating on the class of $\unicode[STIX]{x1D6F4}_{1}^{1}$ -generic reals.
            
            
            
          
        
      @article{10_1017_fms_2017_27,
     author = {NOAM GREENBERG and BENOIT MONIN},
     title = {HIGHER {RANDOMNESS} {AND} {GENERICITY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fms.2017.27},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.27/}
}
                      
                      
                    NOAM GREENBERG; BENOIT MONIN. HIGHER RANDOMNESS AND GENERICITY. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.27
Cité par Sources :