EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS
Forum of Mathematics, Sigma, Tome 5 (2017)
Voir la notice de l'article provenant de la source Cambridge University Press
We provide a quantum algorithm for simulating the dynamics of sparse Hamiltonians with complexity sublogarithmic in the inverse error, an exponential improvement over previous methods. Specifically, we show that a $d$ -sparse Hamiltonian $H$ acting on $n$ qubits can be simulated for time $t$ with precision $\unicode[STIX]{x1D716}$ using $O(\unicode[STIX]{x1D70F}(\log (\unicode[STIX]{x1D70F}/\unicode[STIX]{x1D716})/\log \log (\unicode[STIX]{x1D70F}/\unicode[STIX]{x1D716})))$ queries and $O(\unicode[STIX]{x1D70F}(\log ^{2}(\unicode[STIX]{x1D70F}/\unicode[STIX]{x1D716})/\log \log (\unicode[STIX]{x1D70F}/\unicode[STIX]{x1D716}))n)$ additional 2-qubit gates, where $\unicode[STIX]{x1D70F}=d^{2}\Vert H\Vert _{\max }t$ . Unlike previous approaches based on product formulas, the query complexity is independent of the number of qubits acted on, and for time-varying Hamiltonians, the gate complexity is logarithmic in the norm of the derivative of the Hamiltonian. Our algorithm is based on a significantly improved simulation of the continuous- and fractional-query models using discrete quantum queries, showing that the former models are not much more powerful than the discrete model even for very small error. We also simplify the analysis of this conversion, avoiding the need for a complex fault-correction procedure. Our simplification relies on a new form of ‘oblivious amplitude amplification’ that can be applied even though the reflection about the input state is unavailable. Finally, we prove new lower bounds showing that our algorithms are optimal as a function of the error.
@article{10_1017_fms_2017_2,
author = {DOMINIC W. BERRY and ANDREW M. CHILDS and RICHARD CLEVE and ROBIN KOTHARI and ROLANDO~D. SOMMA},
title = {EXPONENTIAL {IMPROVEMENT} {IN} {PRECISION} {FOR} {SIMULATING} {SPARSE} {HAMILTONIANS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {5},
year = {2017},
doi = {10.1017/fms.2017.2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.2/}
}
TY - JOUR AU - DOMINIC W. BERRY AU - ANDREW M. CHILDS AU - RICHARD CLEVE AU - ROBIN KOTHARI AU - ROLANDO D. SOMMA TI - EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS JO - Forum of Mathematics, Sigma PY - 2017 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.2/ DO - 10.1017/fms.2017.2 LA - en ID - 10_1017_fms_2017_2 ER -
%0 Journal Article %A DOMINIC W. BERRY %A ANDREW M. CHILDS %A RICHARD CLEVE %A ROBIN KOTHARI %A ROLANDO D. SOMMA %T EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS %J Forum of Mathematics, Sigma %D 2017 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.2/ %R 10.1017/fms.2017.2 %G en %F 10_1017_fms_2017_2
DOMINIC W. BERRY; ANDREW M. CHILDS; RICHARD CLEVE; ROBIN KOTHARI; ROLANDO D. SOMMA. EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.2
Cité par Sources :