ON THE REGULARITY OF SLE TRACE
Forum of Mathematics, Sigma, Tome 5 (2017)
Voir la notice de l'article provenant de la source Cambridge University Press
We revisit regularity of SLE trace, for all $\unicode[STIX]{x1D705}\neq 8$ , and establish Besov regularity under the usual half-space capacity parametrization. With an embedding theorem of Garsia–Rodemich–Rumsey type, we obtain finite moments (and hence almost surely) optimal variation regularity with index $\min (1+\unicode[STIX]{x1D705}/8,2)$ , improving on previous works of Werness, and also (optimal) Hölder regularity à la Johansson Viklund and Lawler.
@article{10_1017_fms_2017_18,
author = {PETER K. FRIZ and HUY TRAN},
title = {ON {THE} {REGULARITY} {OF} {SLE} {TRACE}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {5},
year = {2017},
doi = {10.1017/fms.2017.18},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.18/}
}
PETER K. FRIZ; HUY TRAN. ON THE REGULARITY OF SLE TRACE. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.18
Cité par Sources :