ON THE REGULARITY OF SLE TRACE
Forum of Mathematics, Sigma, Tome 5 (2017)

Voir la notice de l'article provenant de la source Cambridge University Press

We revisit regularity of SLE trace, for all $\unicode[STIX]{x1D705}\neq 8$ , and establish Besov regularity under the usual half-space capacity parametrization. With an embedding theorem of Garsia–Rodemich–Rumsey type, we obtain finite moments (and hence almost surely) optimal variation regularity with index $\min (1+\unicode[STIX]{x1D705}/8,2)$ , improving on previous works of Werness, and also (optimal) Hölder regularity à la Johansson Viklund and Lawler.
@article{10_1017_fms_2017_18,
     author = {PETER K. FRIZ and HUY TRAN},
     title = {ON {THE} {REGULARITY} {OF} {SLE} {TRACE}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fms.2017.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.18/}
}
TY  - JOUR
AU  - PETER K. FRIZ
AU  - HUY TRAN
TI  - ON THE REGULARITY OF SLE TRACE
JO  - Forum of Mathematics, Sigma
PY  - 2017
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.18/
DO  - 10.1017/fms.2017.18
LA  - en
ID  - 10_1017_fms_2017_18
ER  - 
%0 Journal Article
%A PETER K. FRIZ
%A HUY TRAN
%T ON THE REGULARITY OF SLE TRACE
%J Forum of Mathematics, Sigma
%D 2017
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.18/
%R 10.1017/fms.2017.18
%G en
%F 10_1017_fms_2017_18
PETER K. FRIZ; HUY TRAN. ON THE REGULARITY OF SLE TRACE. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.18

Cité par Sources :