ABELIAN $n$ -DIVISION FIELDS OF ELLIPTIC CURVES AND BRAUER GROUPS OF PRODUCT KUMMER ABELIAN SURFACES
Forum of Mathematics, Sigma, Tome 5 (2017)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $Y$ be a principal homogeneous space of an abelian surface, or a K3 surface, over a finitely generated extension of $\mathbb{Q}$ . In 2008, Skorobogatov and Zarhin showed that the Brauer group modulo algebraic classes $\text{Br}\,Y/\text{Br}_{1}\,Y$ is finite. We study this quotient for the family of surfaces that are geometrically isomorphic to a product of isogenous non-CM elliptic curves, as well as the related family of geometrically Kummer surfaces; both families can be characterized by their geometric Néron–Severi lattices. Over a field of characteristic $0$ , we prove that the existence of a strong uniform bound on the size of the odd torsion of $\text{Br}Y/\text{Br}_{1}Y$ is equivalent to the existence of a strong uniform bound on integers $n$ for which there exist non-CM elliptic curves with abelian $n$ -division fields. Using the same methods we show that, for a fixed prime $\ell$ , a number field $k$ of fixed degree $r$ , and a fixed discriminant of the geometric Néron–Severi lattice, $\#(\text{Br}Y/\text{Br}_{1}Y)[\ell ^{\infty }]$ is bounded by a constant that depends only on $\ell$ , $r$ , and the discriminant.
@article{10_1017_fms_2017_16,
     author = {ANTHONY V\'ARILLY-ALVARADO and BIANCA VIRAY},
     title = {ABELIAN $n$ {-DIVISION} {FIELDS} {OF} {ELLIPTIC} {CURVES} {AND} {BRAUER} {GROUPS} {OF} {PRODUCT} {KUMMER} & {ABELIAN} {SURFACES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fms.2017.16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.16/}
}
TY  - JOUR
AU  - ANTHONY VÁRILLY-ALVARADO
AU  - BIANCA VIRAY
TI  - ABELIAN $n$ -DIVISION FIELDS OF ELLIPTIC CURVES AND BRAUER GROUPS OF PRODUCT KUMMER & ABELIAN SURFACES
JO  - Forum of Mathematics, Sigma
PY  - 2017
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.16/
DO  - 10.1017/fms.2017.16
LA  - en
ID  - 10_1017_fms_2017_16
ER  - 
%0 Journal Article
%A ANTHONY VÁRILLY-ALVARADO
%A BIANCA VIRAY
%T ABELIAN $n$ -DIVISION FIELDS OF ELLIPTIC CURVES AND BRAUER GROUPS OF PRODUCT KUMMER & ABELIAN SURFACES
%J Forum of Mathematics, Sigma
%D 2017
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.16/
%R 10.1017/fms.2017.16
%G en
%F 10_1017_fms_2017_16
ANTHONY VÁRILLY-ALVARADO; BIANCA VIRAY. ABELIAN $n$ -DIVISION FIELDS OF ELLIPTIC CURVES AND BRAUER GROUPS OF PRODUCT KUMMER & ABELIAN SURFACES. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.16

Cité par Sources :