A QUOTIENT OF THE LUBIN–TATE TOWER
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 5 (2017)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              In this article we show that the quotient ${\mathcal{M}}_{\infty }/B(\mathbb{Q}_{p})$ of the Lubin–Tate space at infinite level ${\mathcal{M}}_{\infty }$ by the Borel subgroup of upper triangular matrices $B(\mathbb{Q}_{p})\subset \operatorname{GL}_{2}(\mathbb{Q}_{p})$ exists as a perfectoid space. As an application we show that Scholze’s functor $H_{\acute{\text{e}}\text{t}}^{i}(\mathbb{P}_{\mathbb{C}_{p}}^{1},{\mathcal{F}}_{\unicode[STIX]{x1D70B}})$ is concentrated in degree one whenever $\unicode[STIX]{x1D70B}$ is an irreducible principal series representation or a twist of the Steinberg representation of $\operatorname{GL}_{2}(\mathbb{Q}_{p})$ .
            
            
            
          
        
      @article{10_1017_fms_2017_15,
     author = {JUDITH LUDWIG},
     title = {A {QUOTIENT} {OF} {THE} {LUBIN{\textendash}TATE} {TOWER}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fms.2017.15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.15/}
}
                      
                      
                    JUDITH LUDWIG. A QUOTIENT OF THE LUBIN–TATE TOWER. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.15
Cité par Sources :