HYPERELLIPTIC GRAPHS ANDMETRIZED COMPLEXES
Forum of Mathematics, Sigma, Tome 5 (2017)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove a version of Clifford’s theorem for metrized complexes. Namely, a metrized complex that carries a divisor of degree $2r$ and rank $r$ (for $0$ ) also carries a divisor of degree 2 and rank 1. We provide a structure theorem for hyperelliptic metrized complexes, and use it to classify divisors of degree bounded by the genus. We discuss a tropical version of Martens’ theorem for metric graphs.
@article{10_1017_fms_2017_13,
     author = {YOAV LEN},
     title = {HYPERELLIPTIC {GRAPHS} {ANDMETRIZED} {COMPLEXES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fms.2017.13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.13/}
}
TY  - JOUR
AU  - YOAV LEN
TI  - HYPERELLIPTIC GRAPHS ANDMETRIZED COMPLEXES
JO  - Forum of Mathematics, Sigma
PY  - 2017
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.13/
DO  - 10.1017/fms.2017.13
LA  - en
ID  - 10_1017_fms_2017_13
ER  - 
%0 Journal Article
%A YOAV LEN
%T HYPERELLIPTIC GRAPHS ANDMETRIZED COMPLEXES
%J Forum of Mathematics, Sigma
%D 2017
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.13/
%R 10.1017/fms.2017.13
%G en
%F 10_1017_fms_2017_13
YOAV LEN. HYPERELLIPTIC GRAPHS ANDMETRIZED COMPLEXES. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.13

Cité par Sources :