MINIMALITY AND MUTATION-EQUIVALENCE OF POLYGONS
Forum of Mathematics, Sigma, Tome 5 (2017)
Voir la notice de l'article provenant de la source Cambridge University Press
We introduce a concept of minimality for Fano polygons. We show that, up to mutation, there are only finitely many Fano polygons with given singularity content, and give an algorithm to determine representatives for all mutation-equivalence classes of such polygons. This is a key step in a program to classify orbifold del Pezzo surfaces using mirror symmetry. As an application, we classify all Fano polygons such that the corresponding toric surface is qG-deformation-equivalent to either (i) a smooth surface; or (ii) a surface with only singularities of type $1/3(1,1)$ .
@article{10_1017_fms_2017_10,
author = {ALEXANDER KASPRZYK and BENJAMIN NILL and THOMAS PRINCE},
title = {MINIMALITY {AND} {MUTATION-EQUIVALENCE} {OF} {POLYGONS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {5},
year = {2017},
doi = {10.1017/fms.2017.10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.10/}
}
TY - JOUR AU - ALEXANDER KASPRZYK AU - BENJAMIN NILL AU - THOMAS PRINCE TI - MINIMALITY AND MUTATION-EQUIVALENCE OF POLYGONS JO - Forum of Mathematics, Sigma PY - 2017 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2017.10/ DO - 10.1017/fms.2017.10 LA - en ID - 10_1017_fms_2017_10 ER -
ALEXANDER KASPRZYK; BENJAMIN NILL; THOMAS PRINCE. MINIMALITY AND MUTATION-EQUIVALENCE OF POLYGONS. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2017.10
Cité par Sources :