THE INTEGRAL COHOMOLOGY OF THE HILBERT SCHEME OF TWO POINTS
Forum of Mathematics, Sigma, Tome 4 (2016)
Voir la notice de l'article provenant de la source Cambridge University Press
The Hilbert scheme $X^{[a]}$ of points on a complex manifold $X$ is a compactification of the configuration space of $a$ -element subsets of $X$ . The integral cohomology of $X^{[a]}$ is more subtle than the rational cohomology. In this paper, we compute the mod 2 cohomology of $X^{[2]}$ for any complex manifold $X$ , and the integral cohomology of $X^{[2]}$ when $X$ has torsion-free cohomology.
@article{10_1017_fms_2016_5,
author = {BURT TOTARO},
title = {THE {INTEGRAL} {COHOMOLOGY} {OF} {THE} {HILBERT} {SCHEME} {OF} {TWO} {POINTS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {4},
year = {2016},
doi = {10.1017/fms.2016.5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.5/}
}
BURT TOTARO. THE INTEGRAL COHOMOLOGY OF THE HILBERT SCHEME OF TWO POINTS. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.5
Cité par Sources :