THE INTEGRAL COHOMOLOGY OF THE HILBERT SCHEME OF TWO POINTS
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

The Hilbert scheme $X^{[a]}$ of points on a complex manifold $X$ is a compactification of the configuration space of $a$ -element subsets of $X$ . The integral cohomology of $X^{[a]}$ is more subtle than the rational cohomology. In this paper, we compute the mod 2 cohomology of $X^{[2]}$ for any complex manifold $X$ , and the integral cohomology of $X^{[2]}$ when $X$ has torsion-free cohomology.
@article{10_1017_fms_2016_5,
     author = {BURT TOTARO},
     title = {THE {INTEGRAL} {COHOMOLOGY} {OF} {THE} {HILBERT} {SCHEME} {OF} {TWO} {POINTS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.5/}
}
TY  - JOUR
AU  - BURT TOTARO
TI  - THE INTEGRAL COHOMOLOGY OF THE HILBERT SCHEME OF TWO POINTS
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.5/
DO  - 10.1017/fms.2016.5
LA  - en
ID  - 10_1017_fms_2016_5
ER  - 
%0 Journal Article
%A BURT TOTARO
%T THE INTEGRAL COHOMOLOGY OF THE HILBERT SCHEME OF TWO POINTS
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.5/
%R 10.1017/fms.2016.5
%G en
%F 10_1017_fms_2016_5
BURT TOTARO. THE INTEGRAL COHOMOLOGY OF THE HILBERT SCHEME OF TWO POINTS. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.5

Cité par Sources :