NONCLASSICAL SPECTRAL ASYMPTOTICS AND DIXMIER TRACES: FROM CIRCLES TO CONTACT MANIFOLDS
Forum of Mathematics, Sigma, Tome 5 (2017)
Voir la notice de l'article provenant de la source Cambridge University Press
We consider the spectral behavior and noncommutative geometry of commutators $[P,f]$ , where $P$ is an operator of order 0 with geometric origin and $f$ a multiplication operator by a function. When $f$ is Hölder continuous, the spectral asymptotics is governed by singularities. We study precise spectral asymptotics through the computation of Dixmier traces; such computations have only been considered in less singular settings. Even though a Weyl law fails for these operators, and no pseudodifferential calculus is available, variations of Connes’ residue trace theorem and related integral formulas continue to hold. On the circle, a large class of nonmeasurable Hankel operators is obtained from Hölder continuous functions $f$ , displaying a wide range of nonclassical spectral asymptotics beyond the Weyl law. The results extend from Riemannian manifolds to contact manifolds and noncommutative tori.
@article{10_1017_fms_2016_33,
author = {HEIKO GIMPERLEIN and MAGNUS GOFFENG},
title = {NONCLASSICAL {SPECTRAL} {ASYMPTOTICS} {AND} {DIXMIER} {TRACES:} {FROM} {CIRCLES} {TO} {CONTACT} {MANIFOLDS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {5},
year = {2017},
doi = {10.1017/fms.2016.33},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.33/}
}
TY - JOUR AU - HEIKO GIMPERLEIN AU - MAGNUS GOFFENG TI - NONCLASSICAL SPECTRAL ASYMPTOTICS AND DIXMIER TRACES: FROM CIRCLES TO CONTACT MANIFOLDS JO - Forum of Mathematics, Sigma PY - 2017 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.33/ DO - 10.1017/fms.2016.33 LA - en ID - 10_1017_fms_2016_33 ER -
%0 Journal Article %A HEIKO GIMPERLEIN %A MAGNUS GOFFENG %T NONCLASSICAL SPECTRAL ASYMPTOTICS AND DIXMIER TRACES: FROM CIRCLES TO CONTACT MANIFOLDS %J Forum of Mathematics, Sigma %D 2017 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.33/ %R 10.1017/fms.2016.33 %G en %F 10_1017_fms_2016_33
HEIKO GIMPERLEIN; MAGNUS GOFFENG. NONCLASSICAL SPECTRAL ASYMPTOTICS AND DIXMIER TRACES: FROM CIRCLES TO CONTACT MANIFOLDS. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2016.33
Cité par Sources :