NONCLASSICAL SPECTRAL ASYMPTOTICS AND DIXMIER TRACES: FROM CIRCLES TO CONTACT MANIFOLDS
Forum of Mathematics, Sigma, Tome 5 (2017)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider the spectral behavior and noncommutative geometry of commutators $[P,f]$ , where $P$ is an operator of order 0 with geometric origin and $f$ a multiplication operator by a function. When $f$ is Hölder continuous, the spectral asymptotics is governed by singularities. We study precise spectral asymptotics through the computation of Dixmier traces; such computations have only been considered in less singular settings. Even though a Weyl law fails for these operators, and no pseudodifferential calculus is available, variations of Connes’ residue trace theorem and related integral formulas continue to hold. On the circle, a large class of nonmeasurable Hankel operators is obtained from Hölder continuous functions $f$ , displaying a wide range of nonclassical spectral asymptotics beyond the Weyl law. The results extend from Riemannian manifolds to contact manifolds and noncommutative tori.
@article{10_1017_fms_2016_33,
     author = {HEIKO GIMPERLEIN and MAGNUS GOFFENG},
     title = {NONCLASSICAL {SPECTRAL} {ASYMPTOTICS} {AND} {DIXMIER} {TRACES:} {FROM} {CIRCLES} {TO} {CONTACT} {MANIFOLDS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fms.2016.33},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.33/}
}
TY  - JOUR
AU  - HEIKO GIMPERLEIN
AU  - MAGNUS GOFFENG
TI  - NONCLASSICAL SPECTRAL ASYMPTOTICS AND DIXMIER TRACES: FROM CIRCLES TO CONTACT MANIFOLDS
JO  - Forum of Mathematics, Sigma
PY  - 2017
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.33/
DO  - 10.1017/fms.2016.33
LA  - en
ID  - 10_1017_fms_2016_33
ER  - 
%0 Journal Article
%A HEIKO GIMPERLEIN
%A MAGNUS GOFFENG
%T NONCLASSICAL SPECTRAL ASYMPTOTICS AND DIXMIER TRACES: FROM CIRCLES TO CONTACT MANIFOLDS
%J Forum of Mathematics, Sigma
%D 2017
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.33/
%R 10.1017/fms.2016.33
%G en
%F 10_1017_fms_2016_33
HEIKO GIMPERLEIN; MAGNUS GOFFENG. NONCLASSICAL SPECTRAL ASYMPTOTICS AND DIXMIER TRACES: FROM CIRCLES TO CONTACT MANIFOLDS. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2016.33

Cité par Sources :