NONSURJECTIVE SATELLITE OPERATORS AND PIECEWISE-LINEAR CONCORDANCE
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We exhibit a knot $P$ in the solid torus, representing a generator of first homology, such that for any knot $K$ in the 3-sphere, the satellite knot with pattern $P$ and companion $K$ is not smoothly slice in any homology 4-ball. As a consequence, we obtain a knot in a homology 3-sphere that does not bound a piecewise-linear disk in any homology 4-ball.
@article{10_1017_fms_2016_31,
     author = {ADAM SIMON LEVINE},
     title = {NONSURJECTIVE {SATELLITE} {OPERATORS} {AND} {PIECEWISE-LINEAR} {CONCORDANCE}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.31/}
}
TY  - JOUR
AU  - ADAM SIMON LEVINE
TI  - NONSURJECTIVE SATELLITE OPERATORS AND PIECEWISE-LINEAR CONCORDANCE
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.31/
DO  - 10.1017/fms.2016.31
LA  - en
ID  - 10_1017_fms_2016_31
ER  - 
%0 Journal Article
%A ADAM SIMON LEVINE
%T NONSURJECTIVE SATELLITE OPERATORS AND PIECEWISE-LINEAR CONCORDANCE
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.31/
%R 10.1017/fms.2016.31
%G en
%F 10_1017_fms_2016_31
ADAM SIMON LEVINE. NONSURJECTIVE SATELLITE OPERATORS AND PIECEWISE-LINEAR CONCORDANCE. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.31

Cité par Sources :