DNR AND INCOMPARABLE TURING DEGREES
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We construct an increasing ${\it\omega}$ -sequence $\langle \boldsymbol{a}_{n}\rangle$ of Turing degrees which forms an initial segment of the Turing degrees, and such that each $\boldsymbol{a}_{n+1}$ is diagonally nonrecursive relative to $\boldsymbol{a}_{n}$ . It follows that the DNR principle of reverse mathematics does not imply the existence of Turing incomparable degrees.
@article{10_1017_fms_2016_3,
     author = {MINZHONG CAI and NOAM GREENBERG and MICHAEL MCINERNEY},
     title = {DNR {AND} {INCOMPARABLE} {TURING} {DEGREES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.3/}
}
TY  - JOUR
AU  - MINZHONG CAI
AU  - NOAM GREENBERG
AU  - MICHAEL MCINERNEY
TI  - DNR AND INCOMPARABLE TURING DEGREES
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.3/
DO  - 10.1017/fms.2016.3
LA  - en
ID  - 10_1017_fms_2016_3
ER  - 
%0 Journal Article
%A MINZHONG CAI
%A NOAM GREENBERG
%A MICHAEL MCINERNEY
%T DNR AND INCOMPARABLE TURING DEGREES
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.3/
%R 10.1017/fms.2016.3
%G en
%F 10_1017_fms_2016_3
MINZHONG CAI; NOAM GREENBERG; MICHAEL MCINERNEY. DNR AND INCOMPARABLE TURING DEGREES. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.3

Cité par Sources :