DNR AND INCOMPARABLE TURING DEGREES
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 4 (2016)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We construct an increasing ${\it\omega}$ -sequence $\langle \boldsymbol{a}_{n}\rangle$ of Turing degrees which forms an initial segment of the Turing degrees, and such that each $\boldsymbol{a}_{n+1}$ is diagonally nonrecursive relative to $\boldsymbol{a}_{n}$ . It follows that the DNR principle of reverse mathematics does not imply the existence of Turing incomparable degrees.
            
            
            
          
        
      @article{10_1017_fms_2016_3,
     author = {MINZHONG CAI and NOAM GREENBERG and MICHAEL MCINERNEY},
     title = {DNR {AND} {INCOMPARABLE} {TURING} {DEGREES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.3/}
}
                      
                      
                    MINZHONG CAI; NOAM GREENBERG; MICHAEL MCINERNEY. DNR AND INCOMPARABLE TURING DEGREES. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.3
Cité par Sources :
