ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE
Forum of Mathematics, Sigma, Tome 5 (2017)
Voir la notice de l'article provenant de la source Cambridge University Press
This paper draws connections between the double shuffle equations and structure of associators; Hain and Matsumoto’s universal mixed elliptic motives; and the Rankin–Selberg method for modular forms for $\text{SL}_{2}(\mathbb{Z})$ . We write down explicit formulae for zeta elements $\unicode[STIX]{x1D70E}_{2n-1}$ (generators of the Tannaka Lie algebra of the category of mixed Tate motives over $\mathbb{Z}$ ) in depths up to four, give applications to the Broadhurst–Kreimer conjecture, and solve the double shuffle equations for multiple zeta values in depths two and three.
@article{10_1017_fms_2016_29,
author = {FRANCIS BROWN},
title = {ZETA {ELEMENTS} {IN} {DEPTH} 3 {AND} {THE} {FUNDAMENTAL} {LIE} {ALGEBRA} {OF} {THE} {INFINITESIMAL} {TATE} {CURVE}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {5},
year = {2017},
doi = {10.1017/fms.2016.29},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.29/}
}
TY - JOUR AU - FRANCIS BROWN TI - ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE JO - Forum of Mathematics, Sigma PY - 2017 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.29/ DO - 10.1017/fms.2016.29 LA - en ID - 10_1017_fms_2016_29 ER -
FRANCIS BROWN. ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2016.29
Cité par Sources :