ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE
Forum of Mathematics, Sigma, Tome 5 (2017)

Voir la notice de l'article provenant de la source Cambridge University Press

This paper draws connections between the double shuffle equations and structure of associators; Hain and Matsumoto’s universal mixed elliptic motives; and the Rankin–Selberg method for modular forms for $\text{SL}_{2}(\mathbb{Z})$ . We write down explicit formulae for zeta elements $\unicode[STIX]{x1D70E}_{2n-1}$ (generators of the Tannaka Lie algebra of the category of mixed Tate motives over $\mathbb{Z}$ ) in depths up to four, give applications to the Broadhurst–Kreimer conjecture, and solve the double shuffle equations for multiple zeta values in depths two and three.
@article{10_1017_fms_2016_29,
     author = {FRANCIS BROWN},
     title = {ZETA {ELEMENTS} {IN} {DEPTH} 3 {AND} {THE} {FUNDAMENTAL} {LIE} {ALGEBRA} {OF} {THE} {INFINITESIMAL} {TATE} {CURVE}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fms.2016.29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.29/}
}
TY  - JOUR
AU  - FRANCIS BROWN
TI  - ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE
JO  - Forum of Mathematics, Sigma
PY  - 2017
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.29/
DO  - 10.1017/fms.2016.29
LA  - en
ID  - 10_1017_fms_2016_29
ER  - 
%0 Journal Article
%A FRANCIS BROWN
%T ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE
%J Forum of Mathematics, Sigma
%D 2017
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.29/
%R 10.1017/fms.2016.29
%G en
%F 10_1017_fms_2016_29
FRANCIS BROWN. ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE. Forum of Mathematics, Sigma, Tome 5 (2017). doi: 10.1017/fms.2016.29

Cité par Sources :