A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove the boundedness of a smooth bilinear Rubio de Francia operator associated with an arbitrary collection of squares (with sides parallel to the axes) in the frequency plane

$\begin{eqnarray}(f,g)\mapsto \biggl(\mathop{\sum }_{\unicode[STIX]{x1D714}\in \unicode[STIX]{x1D6FA}}\biggl|\int _{\mathbb{R}^{2}}\hat{f}(\unicode[STIX]{x1D709}){\hat{g}}(\unicode[STIX]{x1D702})\unicode[STIX]{x1D6F7}_{\unicode[STIX]{x1D714}}(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})e^{2\unicode[STIX]{x1D70B}ix(\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\biggr|^{r}\biggr)^{1/r},\end{eqnarray}$

provided $r>2$ . More exactly, we show that the above operator maps $L^{p}\times L^{q}\rightarrow L^{s}$ whenever $p,q,s^{\prime }$ are in the ‘local $L^{r^{\prime }}$ ’ range, that is,

$\begin{eqnarray}\frac{1}{p}+\frac{1}{q}+\frac{1}{s^{\prime }}=1,\quad 0\leqslant \frac{1}{p},\frac{1}{q}\frac{1}{r^{\prime }},\quad \text{and}\quad \frac{1}{s^{\prime }}\frac{1}{r^{\prime }}.\end{eqnarray}$

Note that we allow for negative values of $s^{\prime }$ , which correspond to quasi-Banach spaces $L^{s}$ .
@article{10_1017_fms_2016_21,
     author = {CRISTINA BENEA and FR\'ED\'ERIC BERNICOT},
     title = {A {BILINEAR} {RUBIO} {DE} {FRANCIA} {INEQUALITY} {FOR} {ARBITRARY} {SQUARES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.21/}
}
TY  - JOUR
AU  - CRISTINA BENEA
AU  - FRÉDÉRIC BERNICOT
TI  - A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.21/
DO  - 10.1017/fms.2016.21
LA  - en
ID  - 10_1017_fms_2016_21
ER  - 
%0 Journal Article
%A CRISTINA BENEA
%A FRÉDÉRIC BERNICOT
%T A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.21/
%R 10.1017/fms.2016.21
%G en
%F 10_1017_fms_2016_21
CRISTINA BENEA; FRÉDÉRIC BERNICOT. A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.21

Cité par Sources :