A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 4 (2016)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We prove the boundedness of a smooth bilinear Rubio de Francia operator associated with an arbitrary collection of squares (with sides parallel to the axes) in the frequency plane 
 provided $r>2$ . More exactly, we show that the above operator maps $L^{p}\times L^{q}\rightarrow L^{s}$ whenever $p,q,s^{\prime }$ are in the ‘local $L^{r^{\prime }}$ ’ range, that is, 
 Note that we allow for negative values of $s^{\prime }$ , which correspond to quasi-Banach spaces $L^{s}$ .
            
            
            
          
        
      | $\begin{eqnarray}(f,g)\mapsto \biggl(\mathop{\sum }_{\unicode[STIX]{x1D714}\in \unicode[STIX]{x1D6FA}}\biggl|\int _{\mathbb{R}^{2}}\hat{f}(\unicode[STIX]{x1D709}){\hat{g}}(\unicode[STIX]{x1D702})\unicode[STIX]{x1D6F7}_{\unicode[STIX]{x1D714}}(\unicode[STIX]{x1D709},\unicode[STIX]{x1D702})e^{2\unicode[STIX]{x1D70B}ix(\unicode[STIX]{x1D709}+\unicode[STIX]{x1D702})}\,d\unicode[STIX]{x1D709}\,d\unicode[STIX]{x1D702}\biggr|^{r}\biggr)^{1/r},\end{eqnarray}$ | 
| $\begin{eqnarray}\frac{1}{p}+\frac{1}{q}+\frac{1}{s^{\prime }}=1,\quad 0\leqslant \frac{1}{p},\frac{1}{q}\frac{1}{r^{\prime }},\quad \text{and}\quad \frac{1}{s^{\prime }}\frac{1}{r^{\prime }}.\end{eqnarray}$ | 
@article{10_1017_fms_2016_21,
     author = {CRISTINA BENEA and FR\'ED\'ERIC BERNICOT},
     title = {A {BILINEAR} {RUBIO} {DE} {FRANCIA} {INEQUALITY} {FOR} {ARBITRARY} {SQUARES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.21/}
}
                      
                      
                    TY - JOUR AU - CRISTINA BENEA AU - FRÉDÉRIC BERNICOT TI - A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES JO - Forum of Mathematics, Sigma PY - 2016 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.21/ DO - 10.1017/fms.2016.21 LA - en ID - 10_1017_fms_2016_21 ER -
CRISTINA BENEA; FRÉDÉRIC BERNICOT. A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.21
Cité par Sources :
