ROTH’S THEOREM FOR FOUR VARIABLES AND ADDITIVE STRUCTURES IN SUMS OF SPARSE SETS
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 4 (2016)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We show that if $A\subset \{1,\ldots ,N\}$ does not contain any nontrivial solutions to the equation $x+y+z=3w$ , then 
 where $c>0$ is some absolute constant. In view of Behrend’s construction, this bound is of the right shape: the exponent $1/7$ cannot be replaced by any constant larger than $1/2$ . We also establish a related result, which says that sumsets $A+A+A$ contain long arithmetic progressions if $A\subset \{1,\ldots ,N\}$ , or high-dimensional affine subspaces if $A\subset \mathbb{F}_{q}^{n}$ , even if $A$ has density of the shape above.
            
            
            
          
        
      | $\begin{eqnarray}|A|\leqslant \frac{N}{\exp (c(\log N)^{1/7})},\end{eqnarray}$ | 
@article{10_1017_fms_2016_2,
     author = {TOMASZ SCHOEN and OLOF SISASK},
     title = {ROTH{\textquoteright}S {THEOREM} {FOR} {FOUR} {VARIABLES} {AND} {ADDITIVE} {STRUCTURES} {IN} {SUMS} {OF} {SPARSE} {SETS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.2/}
}
                      
                      
                    TY - JOUR AU - TOMASZ SCHOEN AU - OLOF SISASK TI - ROTH’S THEOREM FOR FOUR VARIABLES AND ADDITIVE STRUCTURES IN SUMS OF SPARSE SETS JO - Forum of Mathematics, Sigma PY - 2016 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.2/ DO - 10.1017/fms.2016.2 LA - en ID - 10_1017_fms_2016_2 ER -
TOMASZ SCHOEN; OLOF SISASK. ROTH’S THEOREM FOR FOUR VARIABLES AND ADDITIVE STRUCTURES IN SUMS OF SPARSE SETS. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.2
Cité par Sources :
