ROTH’S THEOREM FOR FOUR VARIABLES AND ADDITIVE STRUCTURES IN SUMS OF SPARSE SETS
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that if $A\subset \{1,\ldots ,N\}$ does not contain any nontrivial solutions to the equation $x+y+z=3w$ , then

$\begin{eqnarray}|A|\leqslant \frac{N}{\exp (c(\log N)^{1/7})},\end{eqnarray}$

where $c>0$ is some absolute constant. In view of Behrend’s construction, this bound is of the right shape: the exponent $1/7$ cannot be replaced by any constant larger than $1/2$ . We also establish a related result, which says that sumsets $A+A+A$ contain long arithmetic progressions if $A\subset \{1,\ldots ,N\}$ , or high-dimensional affine subspaces if $A\subset \mathbb{F}_{q}^{n}$ , even if $A$ has density of the shape above.
@article{10_1017_fms_2016_2,
     author = {TOMASZ SCHOEN and OLOF SISASK},
     title = {ROTH{\textquoteright}S {THEOREM} {FOR} {FOUR} {VARIABLES} {AND} {ADDITIVE} {STRUCTURES} {IN} {SUMS} {OF} {SPARSE} {SETS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.2/}
}
TY  - JOUR
AU  - TOMASZ SCHOEN
AU  - OLOF SISASK
TI  - ROTH’S THEOREM FOR FOUR VARIABLES AND ADDITIVE STRUCTURES IN SUMS OF SPARSE SETS
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.2/
DO  - 10.1017/fms.2016.2
LA  - en
ID  - 10_1017_fms_2016_2
ER  - 
%0 Journal Article
%A TOMASZ SCHOEN
%A OLOF SISASK
%T ROTH’S THEOREM FOR FOUR VARIABLES AND ADDITIVE STRUCTURES IN SUMS OF SPARSE SETS
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.2/
%R 10.1017/fms.2016.2
%G en
%F 10_1017_fms_2016_2
TOMASZ SCHOEN; OLOF SISASK. ROTH’S THEOREM FOR FOUR VARIABLES AND ADDITIVE STRUCTURES IN SUMS OF SPARSE SETS. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.2

Cité par Sources :