AN INCIDENCE CONJECTURE OF BOURGAIN OVER FIELDS OF POSITIVE CHARACTERISTIC
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 4 (2016)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              In this note we generalize a recent theorem of Guth and Katz on incidences between points and lines in 3-space from characteristic 0 to characteristic $p$ , and we explain how some of the special features of algebraic geometry in characteristic $p$ manifest themselves in problems of incidence geometry.
            
            
            
          
        
      @article{10_1017_fms_2016_19,
     author = {JORDAN S. ELLENBERG and M\'ARTON HABLICSEK},
     title = {AN {INCIDENCE} {CONJECTURE} {OF} {BOURGAIN} {OVER} {FIELDS} {OF} {POSITIVE} {CHARACTERISTIC}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.19/}
}
                      
                      
                    TY - JOUR AU - JORDAN S. ELLENBERG AU - MÁRTON HABLICSEK TI - AN INCIDENCE CONJECTURE OF BOURGAIN OVER FIELDS OF POSITIVE CHARACTERISTIC JO - Forum of Mathematics, Sigma PY - 2016 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.19/ DO - 10.1017/fms.2016.19 LA - en ID - 10_1017_fms_2016_19 ER -
%0 Journal Article %A JORDAN S. ELLENBERG %A MÁRTON HABLICSEK %T AN INCIDENCE CONJECTURE OF BOURGAIN OVER FIELDS OF POSITIVE CHARACTERISTIC %J Forum of Mathematics, Sigma %D 2016 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.19/ %R 10.1017/fms.2016.19 %G en %F 10_1017_fms_2016_19
JORDAN S. ELLENBERG; MÁRTON HABLICSEK. AN INCIDENCE CONJECTURE OF BOURGAIN OVER FIELDS OF POSITIVE CHARACTERISTIC. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.19
Cité par Sources :
