AN INCIDENCE CONJECTURE OF BOURGAIN OVER FIELDS OF POSITIVE CHARACTERISTIC
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

In this note we generalize a recent theorem of Guth and Katz on incidences between points and lines in 3-space from characteristic 0 to characteristic $p$ , and we explain how some of the special features of algebraic geometry in characteristic $p$ manifest themselves in problems of incidence geometry.
@article{10_1017_fms_2016_19,
     author = {JORDAN S. ELLENBERG and M\'ARTON HABLICSEK},
     title = {AN {INCIDENCE} {CONJECTURE} {OF} {BOURGAIN} {OVER} {FIELDS} {OF} {POSITIVE} {CHARACTERISTIC}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.19/}
}
TY  - JOUR
AU  - JORDAN S. ELLENBERG
AU  - MÁRTON HABLICSEK
TI  - AN INCIDENCE CONJECTURE OF BOURGAIN OVER FIELDS OF POSITIVE CHARACTERISTIC
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.19/
DO  - 10.1017/fms.2016.19
LA  - en
ID  - 10_1017_fms_2016_19
ER  - 
%0 Journal Article
%A JORDAN S. ELLENBERG
%A MÁRTON HABLICSEK
%T AN INCIDENCE CONJECTURE OF BOURGAIN OVER FIELDS OF POSITIVE CHARACTERISTIC
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.19/
%R 10.1017/fms.2016.19
%G en
%F 10_1017_fms_2016_19
JORDAN S. ELLENBERG; MÁRTON HABLICSEK. AN INCIDENCE CONJECTURE OF BOURGAIN OVER FIELDS OF POSITIVE CHARACTERISTIC. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.19

Cité par Sources :