TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 4 (2016)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We construct algebras of endomorphisms in the derived category of the cohomology of arithmetic manifolds, which are generated by Hecke operators. We construct Galois representations with coefficients in these Hecke algebras and apply this technique to sharpen recent results of P. Scholze.
            
            
            
          
        
      @article{10_1017_fms_2016_16,
     author = {JAMES NEWTON and JACK A. THORNE},
     title = {TORSION {GALOIS} {REPRESENTATIONS} {OVER} {CM} {FIELDS} {AND} {HECKE} {ALGEBRAS} {IN} {THE} {DERIVED} {CATEGORY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.16/}
}
                      
                      
                    TY - JOUR AU - JAMES NEWTON AU - JACK A. THORNE TI - TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY JO - Forum of Mathematics, Sigma PY - 2016 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.16/ DO - 10.1017/fms.2016.16 LA - en ID - 10_1017_fms_2016_16 ER -
%0 Journal Article %A JAMES NEWTON %A JACK A. THORNE %T TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY %J Forum of Mathematics, Sigma %D 2016 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.16/ %R 10.1017/fms.2016.16 %G en %F 10_1017_fms_2016_16
JAMES NEWTON; JACK A. THORNE. TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.16
Cité par Sources :
