TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We construct algebras of endomorphisms in the derived category of the cohomology of arithmetic manifolds, which are generated by Hecke operators. We construct Galois representations with coefficients in these Hecke algebras and apply this technique to sharpen recent results of P. Scholze.
@article{10_1017_fms_2016_16,
     author = {JAMES NEWTON and JACK A. THORNE},
     title = {TORSION {GALOIS} {REPRESENTATIONS} {OVER} {CM} {FIELDS} {AND} {HECKE} {ALGEBRAS} {IN} {THE} {DERIVED} {CATEGORY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.16/}
}
TY  - JOUR
AU  - JAMES NEWTON
AU  - JACK A. THORNE
TI  - TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.16/
DO  - 10.1017/fms.2016.16
LA  - en
ID  - 10_1017_fms_2016_16
ER  - 
%0 Journal Article
%A JAMES NEWTON
%A JACK A. THORNE
%T TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.16/
%R 10.1017/fms.2016.16
%G en
%F 10_1017_fms_2016_16
JAMES NEWTON; JACK A. THORNE. TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.16

Cité par Sources :