INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $L$ be a countable language. We say that a countable infinite $L$ -structure ${\mathcal{M}}$ admits an invariant measure when there is a probability measure on the space of $L$ -structures with the same underlying set as ${\mathcal{M}}$ that is invariant under permutations of that set, and that assigns measure one to the isomorphism class of ${\mathcal{M}}$ . We show that ${\mathcal{M}}$ admits an invariant measure if and only if it has trivial definable closure, that is, the pointwise stabilizer in $\text{Aut}({\mathcal{M}})$ of an arbitrary finite tuple of ${\mathcal{M}}$ fixes no additional points. When ${\mathcal{M}}$ is a Fraïssé limit in a relational language, this amounts to requiring that the age of ${\mathcal{M}}$ have strong amalgamation. Our results give rise to new instances of structures that admit invariant measures and structures that do not.
@article{10_1017_fms_2016_15,
     author = {NATHANAEL ACKERMAN and CAMERON FREER and REHANA PATEL},
     title = {INVARIANT {MEASURES} {CONCENTRATED} {ON} {COUNTABLE} {STRUCTURES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.15/}
}
TY  - JOUR
AU  - NATHANAEL ACKERMAN
AU  - CAMERON FREER
AU  - REHANA PATEL
TI  - INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.15/
DO  - 10.1017/fms.2016.15
LA  - en
ID  - 10_1017_fms_2016_15
ER  - 
%0 Journal Article
%A NATHANAEL ACKERMAN
%A CAMERON FREER
%A REHANA PATEL
%T INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.15/
%R 10.1017/fms.2016.15
%G en
%F 10_1017_fms_2016_15
NATHANAEL ACKERMAN; CAMERON FREER; REHANA PATEL. INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.15

Cité par Sources :