ORBIT PARAMETRIZATIONS FOR K3 SURFACES
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We study moduli spaces of lattice-polarized K3 surfaces in terms of orbits of representations of algebraic groups. In particular, over an algebraically closed field of characteristic 0, we show that in many cases, the nondegenerate orbits of a representation are in bijection with K3 surfaces (up to suitable equivalence) whose Néron–Severi lattice contains a given lattice. An immediate consequence is that the corresponding moduli spaces of these lattice-polarized K3 surfaces are all unirational. Our constructions also produce many fixed-point-free automorphisms of positive entropy on K3 surfaces in various families associated to these representations, giving a natural extension of recent work of Oguiso.
@article{10_1017_fms_2016_12,
     author = {MANJUL BHARGAVA and WEI HO and ABHINAV KUMAR},
     title = {ORBIT {PARAMETRIZATIONS} {FOR} {K3} {SURFACES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2016.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.12/}
}
TY  - JOUR
AU  - MANJUL BHARGAVA
AU  - WEI HO
AU  - ABHINAV KUMAR
TI  - ORBIT PARAMETRIZATIONS FOR K3 SURFACES
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.12/
DO  - 10.1017/fms.2016.12
LA  - en
ID  - 10_1017_fms_2016_12
ER  - 
%0 Journal Article
%A MANJUL BHARGAVA
%A WEI HO
%A ABHINAV KUMAR
%T ORBIT PARAMETRIZATIONS FOR K3 SURFACES
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2016.12/
%R 10.1017/fms.2016.12
%G en
%F 10_1017_fms_2016_12
MANJUL BHARGAVA; WEI HO; ABHINAV KUMAR. ORBIT PARAMETRIZATIONS FOR K3 SURFACES. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2016.12

Cité par Sources :