ON THE IRREGULAR HODGE FILTRATION OF EXPONENTIALLY TWISTED MIXED HODGE MODULES
Forum of Mathematics, Sigma, Tome 3 (2015)
Voir la notice de l'article provenant de la source Cambridge University Press
Given a mixed Hodge module $\mathcal{N}$ and a meromorphic function $f$ on a complex manifold, we associate to these data a filtration (the irregular Hodge filtration) on the exponentially twisted holonomic module $\mathcal{N}\otimes \mathcal{E}^{f}$, which extends the construction of Esnault et al. ($E_{1}$-degeneration of the irregular Hodge filtration (with an appendix by Saito), J. reine angew. Math. (2015),doi:10.1515/crelle-2014-0118). We show the strictness of the push-forward filtered ${\mathcal{D}}$-module through any projective morphism ${\it\pi}:X\rightarrow Y$, by using the theory of mixed twistor ${\mathcal{D}}$-modules of Mochizuki. We consider the example of the rescaling of a regular function $f$, which leads to an expression of the irregular Hodge filtration of the Laplace transform of the Gauss–Manin systems of $f$ in terms of the Harder–Narasimhan filtration of the Kontsevich bundles associated with $f$.
@article{10_1017_fms_2015_8,
author = {CLAUDE SABBAH and JENG-DAW YU},
title = {ON {THE} {IRREGULAR} {HODGE} {FILTRATION} {OF} {EXPONENTIALLY} {TWISTED} {MIXED} {HODGE} {MODULES}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fms.2015.8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.8/}
}
TY - JOUR AU - CLAUDE SABBAH AU - JENG-DAW YU TI - ON THE IRREGULAR HODGE FILTRATION OF EXPONENTIALLY TWISTED MIXED HODGE MODULES JO - Forum of Mathematics, Sigma PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.8/ DO - 10.1017/fms.2015.8 LA - en ID - 10_1017_fms_2015_8 ER -
CLAUDE SABBAH; JENG-DAW YU. ON THE IRREGULAR HODGE FILTRATION OF EXPONENTIALLY TWISTED MIXED HODGE MODULES. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.8
Cité par Sources :