FINITE $p$-GROUPS WITH SMALL AUTOMORPHISM GROUP
Forum of Mathematics, Sigma, Tome 3 (2015)
Voir la notice de l'article provenant de la source Cambridge University Press
For each prime $p$ we construct a family $\{G_{i}\}$ of finite $p$-groups such that $|\text{Aut}(G_{i})|/|G_{i}|$ tends to zero as $i$ tends to infinity. This disproves a well-known conjecture that $|G|$ divides $|\text{Aut}(G)|$ for every nonabelian finite $p$-group $G$.
@article{10_1017_fms_2015_6,
author = {JON GONZ\'ALEZ-S\'ANCHEZ and ANDREI JAIKIN-ZAPIRAIN},
title = {FINITE $p${-GROUPS} {WITH} {SMALL} {AUTOMORPHISM} {GROUP}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fms.2015.6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.6/}
}
TY - JOUR AU - JON GONZÁLEZ-SÁNCHEZ AU - ANDREI JAIKIN-ZAPIRAIN TI - FINITE $p$-GROUPS WITH SMALL AUTOMORPHISM GROUP JO - Forum of Mathematics, Sigma PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.6/ DO - 10.1017/fms.2015.6 LA - en ID - 10_1017_fms_2015_6 ER -
JON GONZÁLEZ-SÁNCHEZ; ANDREI JAIKIN-ZAPIRAIN. FINITE $p$-GROUPS WITH SMALL AUTOMORPHISM GROUP. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.6
Cité par Sources :