ANALYTIC EQUIVALENCE RELATIONS SATISFYING HYPERARITHMETIC-IS-RECURSIVE
Forum of Mathematics, Sigma, Tome 3 (2015)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove, in $\text{ZF}+\boldsymbol{{\it\Sigma}}_{2}^{1}$-determinacy, that, for any analytic equivalence relation $E$, the following three statements are equivalent: (1) $E$ does not have perfectly many classes, (2) $E$ satisfies hyperarithmetic-is-recursive on a cone, and (3) relative to some oracle, for every equivalence class $[Y]_{E}$ we have that a real $X$ computes a member of the equivalence class if and only if ${\it\omega}_{1}^{X}\geqslant {\it\omega}_{1}^{[Y]}$. We also show that the implication from (1) to (2) is equivalent to the existence of sharps over $ZF$.
@article{10_1017_fms_2015_5,
author = {ANTONIO MONTALB\'AN},
title = {ANALYTIC {EQUIVALENCE} {RELATIONS} {SATISFYING} {HYPERARITHMETIC-IS-RECURSIVE}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fms.2015.5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.5/}
}
ANTONIO MONTALBÁN. ANALYTIC EQUIVALENCE RELATIONS SATISFYING HYPERARITHMETIC-IS-RECURSIVE. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.5
Cité par Sources :