A NOTE ON RICH LINES IN TRULY HIGH DIMENSIONAL SETS
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We modify an argument of Hablicsek and Scherr to show that if a collection of points in $\mathbb{C}^{d}$ spans many $r$ -rich lines, then many of these lines must lie in a common $(d-1)$ -flat. This is closely related to a previous result of Dvir and Gopi.
@article{10_1017_fms_2015_34,
     author = {JOSHUA ZAHL},
     title = {A {NOTE} {ON} {RICH} {LINES} {IN} {TRULY} {HIGH} {DIMENSIONAL} {SETS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2015.34},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.34/}
}
TY  - JOUR
AU  - JOSHUA ZAHL
TI  - A NOTE ON RICH LINES IN TRULY HIGH DIMENSIONAL SETS
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.34/
DO  - 10.1017/fms.2015.34
LA  - en
ID  - 10_1017_fms_2015_34
ER  - 
%0 Journal Article
%A JOSHUA ZAHL
%T A NOTE ON RICH LINES IN TRULY HIGH DIMENSIONAL SETS
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.34/
%R 10.1017/fms.2015.34
%G en
%F 10_1017_fms_2015_34
JOSHUA ZAHL. A NOTE ON RICH LINES IN TRULY HIGH DIMENSIONAL SETS. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2015.34

Cité par Sources :