A NOTE ON RICH LINES IN TRULY HIGH DIMENSIONAL SETS
Forum of Mathematics, Sigma, Tome 4 (2016)
Voir la notice de l'article provenant de la source Cambridge University Press
We modify an argument of Hablicsek and Scherr to show that if a collection of points in $\mathbb{C}^{d}$ spans many $r$ -rich lines, then many of these lines must lie in a common $(d-1)$ -flat. This is closely related to a previous result of Dvir and Gopi.
@article{10_1017_fms_2015_34,
author = {JOSHUA ZAHL},
title = {A {NOTE} {ON} {RICH} {LINES} {IN} {TRULY} {HIGH} {DIMENSIONAL} {SETS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {4},
year = {2016},
doi = {10.1017/fms.2015.34},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.34/}
}
JOSHUA ZAHL. A NOTE ON RICH LINES IN TRULY HIGH DIMENSIONAL SETS. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2015.34
Cité par Sources :