COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS
Forum of Mathematics, Sigma, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that, by taking normalizations over certain auxiliary good reduction integral models, one obtains integral models of toroidal and minimal compactifications of PEL-type Shimura varieties which enjoy many features of the good reduction theory studied as in the earlier works of Faltings and Chai’s and the author’s. We treat all PEL-type cases uniformly, with no assumption on the level, ramifications, and residue characteristics involved.
@article{10_1017_fms_2015_31,
     author = {KAI-WEN LAN},
     title = {COMPACTIFICATIONS {OF} {PEL-TYPE} {SHIMURA} {VARIETIES} {IN} {RAMIFIED} {CHARACTERISTICS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fms.2015.31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.31/}
}
TY  - JOUR
AU  - KAI-WEN LAN
TI  - COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS
JO  - Forum of Mathematics, Sigma
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.31/
DO  - 10.1017/fms.2015.31
LA  - en
ID  - 10_1017_fms_2015_31
ER  - 
%0 Journal Article
%A KAI-WEN LAN
%T COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS
%J Forum of Mathematics, Sigma
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.31/
%R 10.1017/fms.2015.31
%G en
%F 10_1017_fms_2015_31
KAI-WEN LAN. COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS. Forum of Mathematics, Sigma, Tome 4 (2016). doi: 10.1017/fms.2015.31

Cité par Sources :