THE AUTOMORPHISM GROUP OF A SHIFT OF LINEAR GROWTH: BEYOND TRANSITIVITY
Forum of Mathematics, Sigma, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

For a finite alphabet ${\mathcal{A}}$ and shift $X\subseteq {\mathcal{A}}^{\mathbb{Z}}$ whose factor complexity function grows at most linearly, we study the algebraic properties of the automorphism group $\text{Aut}(X)$. For such systems, we show that every finitely generated subgroup of $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$, in contrast to the behavior when the complexity function grows more quickly. With additional dynamical assumptions we show more: if $X$ is transitive, then $\text{Aut}(X)$ is virtually $\mathbb{Z}$; if $X$ has dense aperiodic points, then $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$. We also classify all finite groups that arise as the automorphism group of a shift.
@article{10_1017_fms_2015_3,
     author = {VAN CYR and BRYNA KRA},
     title = {THE {AUTOMORPHISM} {GROUP} {OF} {A} {SHIFT} {OF} {LINEAR} {GROWTH:} {BEYOND} {TRANSITIVITY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fms.2015.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.3/}
}
TY  - JOUR
AU  - VAN CYR
AU  - BRYNA KRA
TI  - THE AUTOMORPHISM GROUP OF A SHIFT OF LINEAR GROWTH: BEYOND TRANSITIVITY
JO  - Forum of Mathematics, Sigma
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.3/
DO  - 10.1017/fms.2015.3
LA  - en
ID  - 10_1017_fms_2015_3
ER  - 
%0 Journal Article
%A VAN CYR
%A BRYNA KRA
%T THE AUTOMORPHISM GROUP OF A SHIFT OF LINEAR GROWTH: BEYOND TRANSITIVITY
%J Forum of Mathematics, Sigma
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.3/
%R 10.1017/fms.2015.3
%G en
%F 10_1017_fms_2015_3
VAN CYR; BRYNA KRA. THE AUTOMORPHISM GROUP OF A SHIFT OF LINEAR GROWTH: BEYOND TRANSITIVITY. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.3

Cité par Sources :