UNIFORM BMO ESTIMATE OF PARABOLIC EQUATIONS AND GLOBAL WELL-POSEDNESS OF THE THERMISTOR PROBLEM
Forum of Mathematics, Sigma, Tome 3 (2015)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove global well-posedness of the time-dependent degenerate thermistor problem by establishing a uniform-in-time bounded mean ocsillation (BMO) estimate of inhomogeneous parabolic equations. Applying this estimate to the temperature equation, we derive a BMO bound of the temperature uniform with respect to time, which implies that the electric conductivity is an $A_{2}$ weight. The Hölder continuity of the electric potential is then proved by applying the De Giorgi–Nash–Moser estimate for degenerate elliptic equations with an $A_{2}$ coefficient. The uniqueness of the solution is proved based on the established regularity of the weak solution. Our results also imply the existence of a global classical solution when the initial and boundary data are smooth.
@article{10_1017_fms_2015_29,
author = {BUYANG LI and CHAOXIA YANG},
title = {UNIFORM {BMO} {ESTIMATE} {OF} {PARABOLIC} {EQUATIONS} {AND} {GLOBAL} {WELL-POSEDNESS} {OF} {THE} {THERMISTOR} {PROBLEM}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fms.2015.29},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.29/}
}
TY - JOUR AU - BUYANG LI AU - CHAOXIA YANG TI - UNIFORM BMO ESTIMATE OF PARABOLIC EQUATIONS AND GLOBAL WELL-POSEDNESS OF THE THERMISTOR PROBLEM JO - Forum of Mathematics, Sigma PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.29/ DO - 10.1017/fms.2015.29 LA - en ID - 10_1017_fms_2015_29 ER -
%0 Journal Article %A BUYANG LI %A CHAOXIA YANG %T UNIFORM BMO ESTIMATE OF PARABOLIC EQUATIONS AND GLOBAL WELL-POSEDNESS OF THE THERMISTOR PROBLEM %J Forum of Mathematics, Sigma %D 2015 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.29/ %R 10.1017/fms.2015.29 %G en %F 10_1017_fms_2015_29
BUYANG LI; CHAOXIA YANG. UNIFORM BMO ESTIMATE OF PARABOLIC EQUATIONS AND GLOBAL WELL-POSEDNESS OF THE THERMISTOR PROBLEM. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.29
Cité par Sources :