LOCAL SET APPROXIMATION: MATTILA–VUORINEN TYPE SETS, REIFENBERG TYPE SETS, AND TANGENT SETS
Forum of Mathematics, Sigma, Tome 3 (2015)
Voir la notice de l'article provenant de la source Cambridge University Press
We investigate the interplay between the local and asymptotic geometry of a set $A\subseteq \mathbb{R}^{n}$ and the geometry of model sets ${\mathcal{S}}\subset {\mathcal{P}}(\mathbb{R}^{n})$, which approximate $A$ locally uniformly on small scales. The framework for local set approximation developed in this paper unifies and extends ideas of Jones, Mattila and Vuorinen, Reifenberg, and Preiss. We indicate several applications of this framework to variational problems that arise in geometric measure theory and partial differential equations. For instance, we show that the singular part of the support of an $(n-1)$-dimensional asymptotically optimally doubling measure in $\mathbb{R}^{n}$ ($n\geqslant 4$) has upper Minkowski dimension at most $n-4$.
@article{10_1017_fms_2015_26,
author = {MATTHEW BADGER and STEPHEN LEWIS},
title = {LOCAL {SET} {APPROXIMATION:} {MATTILA{\textendash}VUORINEN} {TYPE} {SETS,} {REIFENBERG} {TYPE} {SETS,} {AND} {TANGENT} {SETS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fms.2015.26},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.26/}
}
TY - JOUR AU - MATTHEW BADGER AU - STEPHEN LEWIS TI - LOCAL SET APPROXIMATION: MATTILA–VUORINEN TYPE SETS, REIFENBERG TYPE SETS, AND TANGENT SETS JO - Forum of Mathematics, Sigma PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.26/ DO - 10.1017/fms.2015.26 LA - en ID - 10_1017_fms_2015_26 ER -
%0 Journal Article %A MATTHEW BADGER %A STEPHEN LEWIS %T LOCAL SET APPROXIMATION: MATTILA–VUORINEN TYPE SETS, REIFENBERG TYPE SETS, AND TANGENT SETS %J Forum of Mathematics, Sigma %D 2015 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.26/ %R 10.1017/fms.2015.26 %G en %F 10_1017_fms_2015_26
MATTHEW BADGER; STEPHEN LEWIS. LOCAL SET APPROXIMATION: MATTILA–VUORINEN TYPE SETS, REIFENBERG TYPE SETS, AND TANGENT SETS. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.26
Cité par Sources :