NONCOMMUTATIVE DE LEEUW THEOREMS
Forum of Mathematics, Sigma, Tome 3 (2015)
Voir la notice de l'article provenant de la source Cambridge University Press
Let $\text{H}$ be a subgroup of some locally compact group $\text{G}$. Assume that $\text{H}$ is approximable by discrete subgroups and that $\text{G}$ admits neighborhood bases which are almost invariant under conjugation by finite subsets of $\text{H}$. Let $m:\text{G}\rightarrow \mathbb{C}$ be a bounded continuous symbol giving rise to an $L_{p}$-bounded Fourier multiplier (not necessarily completely bounded) on the group von Neumann algebra of $\text{G}$ for some $1\leqslant p\leqslant \infty$. Then, $m_{\mid _{\text{H}}}$ yields an $L_{p}$-bounded Fourier multiplier on the group von Neumann algebra of $\text{H}$ provided that the modular function ${\rm\Delta}_{\text{G}}$ is equal to 1 over $\text{H}$. This is a noncommutative form of de Leeuw’s restriction theorem for a large class of pairs $(\text{G},\text{H})$. Our assumptions on $\text{H}$ are quite natural, and they recover the classical result. The main difference with de Leeuw’s original proof is that we replace dilations of Gaussians by other approximations of the identity for which certain new estimates on almost-multiplicative maps are crucial. Compactification via lattice approximation and periodization theorems are also investigated.
@article{10_1017_fms_2015_23,
author = {MARTIJN CASPERS and JAVIER PARCET and MATHILDE PERRIN and \'ERIC RICARD},
title = {NONCOMMUTATIVE {DE} {LEEUW} {THEOREMS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fms.2015.23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.23/}
}
TY - JOUR AU - MARTIJN CASPERS AU - JAVIER PARCET AU - MATHILDE PERRIN AU - ÉRIC RICARD TI - NONCOMMUTATIVE DE LEEUW THEOREMS JO - Forum of Mathematics, Sigma PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.23/ DO - 10.1017/fms.2015.23 LA - en ID - 10_1017_fms_2015_23 ER -
MARTIJN CASPERS; JAVIER PARCET; MATHILDE PERRIN; ÉRIC RICARD. NONCOMMUTATIVE DE LEEUW THEOREMS. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.23
Cité par Sources :