THE TYPICAL STRUCTURE OF MAXIMAL TRIANGLE-FREE GRAPHS
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 3 (2015)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Recently, settling a question of Erdős, Balogh, and Petříčková showed that there are at most $2^{n^{2}/8+o(n^{2})}$$n$-vertex maximal triangle-free graphs, matching the previously known lower bound. Here, we characterize the typical structure of maximal triangle-free graphs. We show that almost every maximal triangle-free graph $G$ admits a vertex partition $X\cup Y$ such that $G[X]$ is a perfect matching and $Y$ is an independent set.Our proof uses the Ruzsa–Szemerédi removal lemma, the Erdős–Simonovits stability theorem, and recent results of Balogh, Morris, and Samotij and Saxton and Thomason on characterization of the structure of independent sets in hypergraphs. The proof also relies on a new bound on the number of maximal independent sets in triangle-free graphs with many vertex-disjoint $P_{3}$s, which is of independent interest.
            
            
            
          
        
      @article{10_1017_fms_2015_22,
     author = {J\'OZSEF BALOGH and HONG LIU and \v{S}\'ARKA PET\v{R}\'I\v{C}KOV\'A and MARYAM SHARIFZADEH},
     title = {THE {TYPICAL} {STRUCTURE} {OF} {MAXIMAL} {TRIANGLE-FREE} {GRAPHS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fms.2015.22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.22/}
}
                      
                      
                    TY - JOUR AU - JÓZSEF BALOGH AU - HONG LIU AU - ŠÁRKA PETŘÍČKOVÁ AU - MARYAM SHARIFZADEH TI - THE TYPICAL STRUCTURE OF MAXIMAL TRIANGLE-FREE GRAPHS JO - Forum of Mathematics, Sigma PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.22/ DO - 10.1017/fms.2015.22 LA - en ID - 10_1017_fms_2015_22 ER -
%0 Journal Article %A JÓZSEF BALOGH %A HONG LIU %A ŠÁRKA PETŘÍČKOVÁ %A MARYAM SHARIFZADEH %T THE TYPICAL STRUCTURE OF MAXIMAL TRIANGLE-FREE GRAPHS %J Forum of Mathematics, Sigma %D 2015 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.22/ %R 10.1017/fms.2015.22 %G en %F 10_1017_fms_2015_22
JÓZSEF BALOGH; HONG LIU; ŠÁRKA PETŘÍČKOVÁ; MARYAM SHARIFZADEH. THE TYPICAL STRUCTURE OF MAXIMAL TRIANGLE-FREE GRAPHS. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.22
Cité par Sources :