LIFTING TORSION GALOIS REPRESENTATIONS
Forum of Mathematics, Sigma, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $p\geqslant 5$ be a prime, and let ${\mathcal{O}}$ be the ring of integers of a finite extension $K$ of $\mathbb{Q}_{p}$ with uniformizer ${\it\pi}$. Let ${\it\rho}_{n}:G_{\mathbb{Q}}\rightarrow \mathit{GL}_{2}\left({\mathcal{O}}/({\it\pi}^{n})\right)$ have modular mod-${\it\pi}$ reduction $\bar{{\it\rho}}$, be ordinary at $p$, and satisfy some mild technical conditions. We show that ${\it\rho}_{n}$ can be lifted to an ${\mathcal{O}}$-valued characteristic-zero geometric representation which arises from a newform. This is new in the case when $K$ is a ramified extension of $\mathbb{Q}_{p}$. We also show that a prescribed ramified complete discrete valuation ring ${\mathcal{O}}$ is the weight-$2$ deformation ring for $\bar{{\it\rho}}$ for a suitable choice of auxiliary level. This implies that the field of Fourier coefficients of newforms of weight 2, square-free level, and trivial nebentype that give rise to semistable $\bar{{\it\rho}}$ of weight 2 can have arbitrarily large ramification index at $p$.
@article{10_1017_fms_2015_17,
     author = {CHANDRASHEKHAR KHARE and RAVI RAMAKRISHNA},
     title = {LIFTING {TORSION} {GALOIS} {REPRESENTATIONS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fms.2015.17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.17/}
}
TY  - JOUR
AU  - CHANDRASHEKHAR KHARE
AU  - RAVI RAMAKRISHNA
TI  - LIFTING TORSION GALOIS REPRESENTATIONS
JO  - Forum of Mathematics, Sigma
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.17/
DO  - 10.1017/fms.2015.17
LA  - en
ID  - 10_1017_fms_2015_17
ER  - 
%0 Journal Article
%A CHANDRASHEKHAR KHARE
%A RAVI RAMAKRISHNA
%T LIFTING TORSION GALOIS REPRESENTATIONS
%J Forum of Mathematics, Sigma
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.17/
%R 10.1017/fms.2015.17
%G en
%F 10_1017_fms_2015_17
CHANDRASHEKHAR KHARE; RAVI RAMAKRISHNA. LIFTING TORSION GALOIS REPRESENTATIONS. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.17

Cité par Sources :