DUAL EQUIVALENCE GRAPHS I: A NEW PARADIGM FOR SCHUR POSITIVITY
Forum of Mathematics, Sigma, Tome 3 (2015)
Voir la notice de l'article provenant de la source Cambridge University Press
We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. This provides a universal method for establishing the symmetry and Schur positivity of quasisymmetric functions.
@article{10_1017_fms_2015_15,
author = {SAMI H. ASSAF},
title = {DUAL {EQUIVALENCE} {GRAPHS} {I:} {A} {NEW} {PARADIGM} {FOR} {SCHUR} {POSITIVITY}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fms.2015.15},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.15/}
}
SAMI H. ASSAF. DUAL EQUIVALENCE GRAPHS I: A NEW PARADIGM FOR SCHUR POSITIVITY. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.15
Cité par Sources :