DUAL EQUIVALENCE GRAPHS I: A NEW PARADIGM FOR SCHUR POSITIVITY
Forum of Mathematics, Sigma, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. This provides a universal method for establishing the symmetry and Schur positivity of quasisymmetric functions.
@article{10_1017_fms_2015_15,
     author = {SAMI H. ASSAF},
     title = {DUAL {EQUIVALENCE} {GRAPHS} {I:} {A} {NEW} {PARADIGM} {FOR} {SCHUR} {POSITIVITY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fms.2015.15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.15/}
}
TY  - JOUR
AU  - SAMI H. ASSAF
TI  - DUAL EQUIVALENCE GRAPHS I: A NEW PARADIGM FOR SCHUR POSITIVITY
JO  - Forum of Mathematics, Sigma
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.15/
DO  - 10.1017/fms.2015.15
LA  - en
ID  - 10_1017_fms_2015_15
ER  - 
%0 Journal Article
%A SAMI H. ASSAF
%T DUAL EQUIVALENCE GRAPHS I: A NEW PARADIGM FOR SCHUR POSITIVITY
%J Forum of Mathematics, Sigma
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.15/
%R 10.1017/fms.2015.15
%G en
%F 10_1017_fms_2015_15
SAMI H. ASSAF. DUAL EQUIVALENCE GRAPHS I: A NEW PARADIGM FOR SCHUR POSITIVITY. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.15

Cité par Sources :