STABILITY PATTERNS IN REPRESENTATION THEORY
Forum of Mathematics, Sigma, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

We develop a comprehensive theory of the stable representation categories of several sequences of groups, including the classical and symmetric groups, and their relation to the unstable categories. An important component of this theory is an array of equivalences between the stable representation category and various other categories, each of which has its own flavor (representation theoretic, combinatorial, commutative algebraic, or categorical) and offers a distinct perspective on the stable category. We use this theory to produce a host of specific results: for example, the construction of injective resolutions of simple objects, duality between the orthogonal and symplectic theories, and a canonical derived auto-equivalence of the general linear theory.
@article{10_1017_fms_2015_10,
     author = {STEVEN V SAM and ANDREW SNOWDEN},
     title = {STABILITY {PATTERNS} {IN} {REPRESENTATION} {THEORY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fms.2015.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.10/}
}
TY  - JOUR
AU  - STEVEN V SAM
AU  - ANDREW SNOWDEN
TI  - STABILITY PATTERNS IN REPRESENTATION THEORY
JO  - Forum of Mathematics, Sigma
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.10/
DO  - 10.1017/fms.2015.10
LA  - en
ID  - 10_1017_fms_2015_10
ER  - 
%0 Journal Article
%A STEVEN V SAM
%A ANDREW SNOWDEN
%T STABILITY PATTERNS IN REPRESENTATION THEORY
%J Forum of Mathematics, Sigma
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2015.10/
%R 10.1017/fms.2015.10
%G en
%F 10_1017_fms_2015_10
STEVEN V SAM; ANDREW SNOWDEN. STABILITY PATTERNS IN REPRESENTATION THEORY. Forum of Mathematics, Sigma, Tome 3 (2015). doi: 10.1017/fms.2015.10

Cité par Sources :