DEGENERATIONS OF COMPLEX DYNAMICAL SYSTEMS
Forum of Mathematics, Sigma, Tome 2 (2014)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that the weak limit of the maximal measures for any degenerating sequence of rational maps on the Riemann sphere ${\hat{{\mathbb{C}}}} $ must be a countable sum of atoms. For a one-parameter family $f_t$ of rational maps, we refine this result by showing that the measures of maximal entropy have a unique limit on $\hat{{\mathbb{C}}}$ as the family degenerates. The family $f_t$ may be viewed as a single rational function on the Berkovich projective line $\mathbf{P}^1_{\mathbb{L}}$ over the completion of the field of formal Puiseux series in $t$ , and the limiting measure on $\hat{{\mathbb{C}}}$ is the ‘residual measure’ associated with the equilibrium measure on $\mathbf{P}^1_{\mathbb{L}}$ . For the proof, we introduce a new technique for quantizing measures on the Berkovich projective line and demonstrate the uniqueness of solutions to a quantized version of the pullback formula for the equilibrium measure on $\mathbf{P}^1_{\mathbb{L}}$ .
@article{10_1017_fms_2014_8,
     author = {LAURA DE MARCO and XANDER FABER},
     title = {DEGENERATIONS {OF} {COMPLEX} {DYNAMICAL} {SYSTEMS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.8/}
}
TY  - JOUR
AU  - LAURA DE MARCO
AU  - XANDER FABER
TI  - DEGENERATIONS OF COMPLEX DYNAMICAL SYSTEMS
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.8/
DO  - 10.1017/fms.2014.8
LA  - en
ID  - 10_1017_fms_2014_8
ER  - 
%0 Journal Article
%A LAURA DE MARCO
%A XANDER FABER
%T DEGENERATIONS OF COMPLEX DYNAMICAL SYSTEMS
%J Forum of Mathematics, Sigma
%D 2014
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.8/
%R 10.1017/fms.2014.8
%G en
%F 10_1017_fms_2014_8
LAURA DE MARCO; XANDER FABER. DEGENERATIONS OF COMPLEX DYNAMICAL SYSTEMS. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.8

Cité par Sources :