SPARSE APPROXIMATION AND RECOVERY BY GREEDY ALGORITHMS IN BANACH SPACES
Forum of Mathematics, Sigma, Tome 2 (2014)

Voir la notice de l'article provenant de la source Cambridge University Press

We study sparse approximation by greedy algorithms. We prove the Lebesgue-type inequalities for the weak Chebyshev greedy algorithm (WCGA), a generalization of the weak orthogonal matching pursuit to the case of a Banach space. The main novelty of these results is a Banach space setting instead of a Hilbert space setting. The results are proved for redundant dictionaries satisfying certain conditions. Then we apply these general results to the case of bases. In particular, we prove that the WCGA provides almost optimal sparse approximation for the trigonometric system in $L_p$ , $2\le p\infty $ .
@article{10_1017_fms_2014_7,
     author = {V. N. TEMLYAKOV},
     title = {SPARSE {APPROXIMATION} {AND} {RECOVERY} {BY} {GREEDY} {ALGORITHMS} {IN} {BANACH} {SPACES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     doi = {10.1017/fms.2014.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.7/}
}
TY  - JOUR
AU  - V. N. TEMLYAKOV
TI  - SPARSE APPROXIMATION AND RECOVERY BY GREEDY ALGORITHMS IN BANACH SPACES
JO  - Forum of Mathematics, Sigma
PY  - 2014
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.7/
DO  - 10.1017/fms.2014.7
LA  - en
ID  - 10_1017_fms_2014_7
ER  - 
%0 Journal Article
%A V. N. TEMLYAKOV
%T SPARSE APPROXIMATION AND RECOVERY BY GREEDY ALGORITHMS IN BANACH SPACES
%J Forum of Mathematics, Sigma
%D 2014
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2014.7/
%R 10.1017/fms.2014.7
%G en
%F 10_1017_fms_2014_7
V. N. TEMLYAKOV. SPARSE APPROXIMATION AND RECOVERY BY GREEDY ALGORITHMS IN BANACH SPACES. Forum of Mathematics, Sigma, Tome 2 (2014). doi: 10.1017/fms.2014.7

Cité par Sources :